

STIR

Software for Tomographic Image Reconstruction

http://stir.sourceforge.net

Kris Thielemans

University College London Algorithms And Software Consulting Ltd

Forthcoming release

- OPENMP support
 - Gradient-computation for projection-based reconstruction
 - Full projections
 - Scatter simulation
- Script for iterative scatter estimation
- Siemens mMR support
- Maximum Likelihood estimation of normalisation factors and randoms for PET
- Some improvements to MATLAB/Python interface

Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, May31 - June 4, 2015 Newport, Rhode Island, USA

Multi-threaded image reconstruction of 3D PET sinogram data with STIR

Kris Thielemans¹, Vesna Cuplov¹, Benjamin A Thomas²

1.Institute of Nuclear Medicine, UCL, UK 2.A*STAR-NUS Clinical Imaging Research Centre, Singapore.

Dual-Opteron system

Intel Xeon Phi 5110P

Wall-clock times per MLEM iteration

Siemens mMR data (span 11)

	Opteron	PHI
NO THREADING	315s	4200s
20 THREADS	20s	~350s

Open-MP for scatter estimation

STIR

Siemens mMR PET support

- List mode data
 - 32-bit format only
- Projection data
 - Need decompression using Siemens utility
 - Need to convert "Siemens" Interfile header to "STIR" Interfile header
- Normalisation file
 - efficiencies, geometric, crystal-interference, axial
 - axial factors only for span=11
 - no dead-time yet
- Randoms
 - Delayeds
 - Randoms from ML singles
- Currently missing
 - no exact alignment between MRAC and PET
- TID Bed AC map

Example results

µ-map

Reconstructed image with the 3 iterations and 21 subsets, smoothing with a Gaussian of 2mm (FWHM)

FDG human brain image reconstruction

Estimation of accidental coincidences

• Delayeds

• Randoms From Singles (RFS)

$$\begin{array}{c} R_{ij} = 2\tau \, S_{i}S_{j} \\ \text{Randoms} & \text{Singles} \\ \text{rate} & \text{rates} \end{array}$$

Provide nearly noiseless estimate of the mean background.

Component-based normalisation

 $\mathcal{E}_{ij} = \mathcal{E}_i \mathcal{E}_j B_{ij} g_{ij}$ $\overset{\uparrow}{\underset{\text{Crystal efficiency timing effects}}{\underset{\text{Crystal effects}}{\overset{\text{Block-}}{\underset{\text{Crystal effects}}}} \mathcal{E}_{ij} \mathcal{E}_{ij}$

How to find these factors?

- Current practice:

Find various components based on specific measurements with known sources (ignoring interdependencies).

– State-of-the-art:

Use Maximum Likelihood estimation in an iterative process.

Impose symmetries to reduce number of independent components.

Example: symmetries on g_{ij}

Iterative Coordinate Ascent ML

Find scale:
$$\varepsilon_{j}^{(0)} = \alpha$$

 $\alpha^{2} = \sum_{ij} y_{ij} / \sum_{ij} A_{ij}$

Initialise with fan-sums:

$$\varepsilon_k^{(1)} = \sum_{i \in F_k} y_{ik} / \sum_{i \in F_k} \alpha A_{ik}$$

Iterate:

$$\varepsilon_k^{new} = \sum_{i \in F_k} y_{ik} / \sum_{i \in F_k} \varepsilon_i A_{ik}$$

- D. Hogg, K. Thielemans, T. Spinks, N. Spyrou, Maximum-Likelihood Estimation of Normalisation Factors for PET, proc. of IEEE Medical Imaging Conf. 2001, vol. 4 pp. 2065 - 2069.
- M. W. Jacobson, K. Thielemans, "Optimizability of LogLikelihoods for the Estimation of Detector Efficiencies and Singles Rates in PET", Conf. Rec. IEEE NSS-MIC 2008, Dresden, Germany.

Algorithm can be shown to converge to ML solution if it exists (Jacobson M. and Thielemans K., to be submitted)

Singles estimation using $ML_{ij} = 2\tau S_i S_j$ Fansums from delayeds

Singles estimated from

Cylinder data measured on Siemens mMR 11

Randoms estimation using ML

Delayeds, 300s

ML randoms estimate, 300s

Delayeds, 200000s

Cylinder data measured on CTI EXACT 3D

Caveats on ML normalisation code

Undocumented

• Geometric code is currently 2D only

 Block timing model has too much freedom (best to switch this off)

Other developments

• STIR on github https://github.com/UCL/STIR

 Virtual Machine with STIR pre-installed Lubuntu, STIR+Python

Future contributions

- 4D Generalised Patlak for multi-bed position data *Nicolas Karakatsanis*
- List-mode reconstruction fixes Nikos Efthimiou & Charalampos Tsoumpas
- TOF Nikos Efthimiou & Charalampos Tsoumpas
- Support for GE PET-MR

CCP in Synergistic PET-MR Reconstruction

- **5 year** funding (April 2015 March 2020)
- Budget for networking activities
 £140K (RC contribution)
- Budget for management (PI, Cols) £110K (RC contribution)
- Core support
 - Scientific programmers: **1 FTE** (for 5 years)
 - Administration: 0.25 FTE (for 5 years)

Aims

- Network formation: bringing together expertise in each modality
 - advancing understanding of PET-MR
 - enhancing understanding of the algorithms used for each modality
- Developing software infrastructure
 - creating an Open Source software platform for integrated PET-MR image reconstruction
 - standardisation of data formats
 - database with test cases

Software

- Framework for 3D and 4D reconstruction of PET-MR data
- Simple enough for education and teaching
- Powerful enough for processing of real data in a research context
- Open Source
- Easy installation

(e.g. installation script, precompiled, virtual machine, Docker)

Architecture overview

Main publication:

Thielemans, Tsoumpas, *et al* (2012) STIR: Software for Tomographic Image Reconstruction Release 2, *Physics in Medicine and Biology*, 57(4):867-83.

Thanks:

- GE Research
- CCP PET-MR
- IEEE

