
STIR
Overview for developers

Kris Thielemans
version 6.2

SPDX-License-Identifier: Apache-2.0 AND License-ref-PARAPET-license
See STIR/LICENSE.txt for details.

Contents

1 Introduction 2
1.1 Language support . 2

2 General conventions 3
2.1 Units . 3
2.2 Coordinate system for image data . 3
2.3 Info on projection data . 3

3 Code conventions 6
3.1 Configuration file . 6
3.2 Namespace . 6
3.3 Naming conventions . 6
3.4 File conventions . 6
3.5 Class definitions . 7
3.6 Argument order conventions . 7
3.7 Error handling . 8
3.8 C++ conventions . 8
3.9 Advanced (?) C++ features used . 8

3.9.1 Templates . 8
3.9.2 Run Time Type Information . 8
3.9.3 Iterators . 8
3.9.4 Shared pointers and other smart pointers 9

3.10 Generic functionality of STIR classes . 10
3.10.1 Copying objects . 10
3.10.2 Comparing objects . 10
3.10.3 Parsing from text files . 10
3.10.4 typedefs . 11

4 CUDA support 11

5 Overview of classes 11
5.1 Images . 11
5.2 Projection data classes . 12
5.3 Data (or image) processor hierarchy . 13
5.4 Projector classes . 13

5.4.1 Symmetries . 14
5.4.2 ForwardProjectorByBin hierarchy . 14
5.4.3 BackProjectorByBin hierarchy . 14
5.4.4 ProjMatrixByBin hierarchy . 15
5.4.5 ProjMatrixElementsForOneBin . 15

5.5 Objective functions . 16
5.6 Reconstruction classes . 16

1

6 Parsing from text files (or strings) 16

7 IO 17
7.1 Images . 17
7.2 Numerical arrays . 18
7.3 Projection data . 18
7.4 Dynamic or gated data . 18

8 Using class hierarchies 18

9 Registries of classes 19
9.1 How does the STIR implementation of registries work? 20

10 Extending STIR with your own files 20

11 Contributing to STIR 21
11.1 Continuous integration testing . 21

12 Conclusion 21

1 Introduction

The objective of this document is to describe the STIR common building blocks library.
The library has been designed so that it can be used for many different algorithms and scanner
geometries, including both cylindrical PET scanners and dual-head rotating coincidence gamma
cameras (although the latter needs some work). The library contains classes and functions to
run parts of the reconstruction in parallel on distributed memory architectures, but the parallel
features are not discussed here.
The building block classes discussed in this document are:

• Classes for images (2D and 3D)

• Classes for projection data (i.e. the measured data)

• Forward projection, back projection and projection matrix classes.

• Classes for iterative reconstruction algorithms

• IO

The documentation for the STIR library is generated automatically from the source using the
doxygen program (http://www.doxygen.org/). This can produce an HTML version but also
various other output formats (you can get e.g. RTF or LaTeX output by simply running doxygen
on the source files that come in the STIR distribution).

1.1 Language support

STIR is written in C++ and currently requires C++-17, but it is compatible with newer versions
of the C++ standard. We will enforce C++-20 from STIR 7.0 (possibly earlier).

Python and MATLAB support is provided via SWIG. This means that Python/MATLAB
interfaces follow the C++ classes closely, although some differences are required as these lan-
guages do not support templates for instance. Naming currently therefore often includes the type,
e.g. FloatVoxelsOnCartesianGrid corresponds to C++ stir::VoxelsOnCartesianGrid<float>.
Python/MATLAB documentation is auto-generated from the C++ documentation. This is not
entirely satisfactory, but the best we can do at present. The SWIG interface files are located in
STIR/src/SWIG/*.i.

2

http://www.doxygen.org/
http://www.swig.org/

2 General conventions

2.1 Units

Distances are in millimetre.
Angles are in radians.
Relative times are in seconds.

2.2 Coordinate system for image data

Although STIR is prepared for general images such as blobs on bcc grids (see the online documen-
tation for class DiscretisedDensity), currently only voxels on a Cartesian grid are implemented
(class VoxelsOnCartesianGrid). The coordinate axes for Cartesian grids are chosen as follows.

x-axis : horizontal axis, pointing right when looking from the bed into the gantry

y-axis : vertical axis, pointing downwards

z-axis : the scanner axis, pointing from the gantry towards the bed

The origin of the X and Y axes are located on the central axis of the PET scanner and the Z
origin (z=0) is located in the middle of the first ring (i.e at the opposite side of the bed). Note
that for images with an even size in x and y, the axis of the scanner does coincide with the centre
of a pixel. In particular, for range of 2n, the (internal) image coordinates would run from -n to
(n-1).

2.3 Info on projection data

Conventional axes and units used for projection data are shown in Figures 2 and 1..

Figure 1: Axes and units within one transaxial slice of the target image. The transaxial section
of the field of view is shown as a grey circle. The number of measured projection elements along
the s-axis is odd, so that s =0 is positioned at the centre of the central projection element. The
angles θ and φ define the direction of the line-of-response

See the STIR glossary for some info on naming conventions for projection data.
In 3D PET, two data storage modes are generally used for a segment1

• where the 3D data is ordered by sinogram (i.e axial position, view angle, tangential
position) (see Figure 3)

1The GE file formats does not store the data per segment, but per view. However, once read into STIR, this
organisation is no longer available.

3

Figure 2: Sketch of main axes, units and angles used in the cylindrical scanner geometry (axial
section, not to scale)

• where the 3D dataset is ordered by view (i.e view angle, axial position, tangential
position) (see Figure 4)

This notation means that for a sinogram, the tangential position runs fastest.
In both modes, the 3D dataset has been stored in several segments where the number of axial
positions in each segment depends on the axial compression (span).

From both modes, 2 different types of 2D datasets can be obtained :

• Sinogram i.e (View, tangential position) for a fixed axial position.

• Viewgram i.e (axial position, tangential position) for a fixed view.

Note that since STIR version 6.0, Time-of-Flight (TOF) is supported. This introduces another
index. However, Sinogram and Viewgram remain 2D objects, and Segment* 3D. This will also
be the case once we have layers and energy windows. In STIR 5.2, we have therefore introduced
new classes SinogramIndices, ViewgramIndices2 and SegmentIndices, containing all “other”
indices necessary to get at the corresponding data. This means that the recommended coding
style is now

ViewgramIndices vg_idx(view_num,segment_num);

auto viewgram = proj_data.get_viewgram(vg_idx);

In the next version of STIR, we will introduce extra methods to be able to conveniently loop over
all viewgrams etc.

For an N ring scanner, if there is no axial compression, there are N-abs(segment num) sino-
grams (or axial positions) in each segment. The first sinogram always corresponds to a coin-
cidence in the first ring of the scanner (ring num=0), where the other ring would obviously be
ring num=abs(ring diff)=abs(segment num).
Well ok, this is really true unless you messed around with the data and removed/added some
sinograms.

The situation with axial compression is more complicated. Obviously there is more than 1 ring-
difference in a segment now. This makes it kind of hard to count how many sinograms/axial positions
you will have and which ring-pairs sit in which segment. You can find some documentation on
how we do this in ProjDataInfoCylindrical.cxx. See also the Michelogram documentation in the
STIR glossary document.

In any case, currently STIR always assumes for each segment that the middle of the scanner
corresponds to the middle of the set of sinograms (taking into account the ring difference).

2Replacing ViewSegmentNumbers in previous versions of STIR.

4

Figure 3: By sinogram storage.

Figure 4: By viewgram storage.

5

Without view offset, view 0 currently corresponds to a vertical projection. It also assumes that
the first detector is at x = 0, y = −R (i.e. on the top of the scanner). Finally, in STIR code, the
first ring of the scanner is the ring furthest from the bed. This corresponds to how the data are
stored in ECAT6,7 and Interfile files.

3 Code conventions

3.1 Configuration file

The file stir/common.h contains general configuration info and tries to iron out some incompati-
bilities for certain compilers. If you include any STIR .h file, you are guaranteed to have included
stir/common.h as well, hence there is usually no need to include it explicitly.

3.2 Namespace

The STIR library has its own C++ namespace: stir. All symbols are within this namespace.
The effect of this is that conflicts with other symbols are impossible (except when somebody
else is using the same namespace). STIR also uses sub-namespaces for certain things. This
usage will probably be expanded in the future. In most of the code, we use macros such as
START NAMESPACE STIR (originally used for older compilers).

3.3 Naming conventions

Types start with capitals, every word is capitalised, no underscores, e.g. DiscretisedDensity.
Variables, methods and members are lower case, underscores between different words, e.g. voxel size.
Variables, methods and members indicating

• a variable or member used to indicate the number of things starts with num, e.g. num gates.

• the number of an item in a sequence end with num, e.g. gate num. 3

• a relative time (normally with respect to the scan start) end with rel time, e.g. tracer injection rel time.

• Pointers to an object called something ptr. Currently there is no naming distinction between
shared pointers etc. This is probably a bad idea. For new code, we recommend to use
something sptr for shared pointers, and something uptr for unique ptrs (see section 3.9.4).

In most cases, access to data of a class is via a get something(), set something() pair.
In general, names are descriptive and hence long. We often take longer to decide about the name
than to write the actual code. If you write new code, do the same. You will be grateful when you
look back at the code a few months later (and not vilified by your successor).

3.4 File conventions

Most classes have their own .h, .inl, .txx and/or .cxx files. File names of such classes are simply
ClassName.h etc. (preserving capitals). In general, looking at the .h file should give enough
information on what a class/function does.
The .inl files contain inline code for functions. The main purpose for this is to keep the .h files as
short and clean as possible.
The .txx files are similar to the .inl files. They contain non-inline definitions of template classes
(or functions). They should only be included by the corresponding .cxx file where the template is

3We are slowly starting to use idx in a few places as “indices” are a more general concept, and avoid confusion
between the pre- and postfix use of num.

6

then instantiated for any desired types. This makes it easier or a user to instantiate a template
for a new type without modifying the original STIR code.4

All STIR include files should be included as #include “stir/maybe a subdir/name.h”
The doxygen comments generally occur in the .h file, unless they are very extensive. In this case,
the .h file contains a brief comment, while the .inl or .cxx file contains the longer description.
To avoid unnecessary interdependencies between .h files (and hence unnecessary rebuilds when
modifying one .h file), we avoid including .h files for ’supporting’ classes as much as possible.
Instead, we only declare the classes needed, e.g. class Bin; instead of #include “stir/Bin.h”.

3.5 Class definitions

Class definitions follow generally the following format (ignoring doxygen comments).

class A

{

public:

enumerated types and other typedefs

static member functions

data members

constructors

destructors

member functions

protected:

enumerated types and other typedefs

static member functions

data members

constructors

destructors

member functions

private:

enumerated types and other typedefs

friends if any

static member functions

data members

constructors

destructors

member functions

};

Inline member functions are defined in the .inl file, and are ordered (where possible) such that
if inline member function a() calls inline member function b(), then b should be defined first.
(Otherwise very few compilers are able to inline the call to b from a.)

3.6 Argument order conventions

When passing output arguments (by reference or by pointer), those arguments occur FIRST in
the list. For instance

void some_function(int& output, const SomeType& some_input_argument, ...);

This order of arguments allows the use of default arguments. Note that the standard C++
library does not use this convention.

4The .txx extension as used because the Insight Toolkit (ITK) uses it as well. It stands for template C++
presumably.

7

3.7 Error handling

Problem reporting is via two functions error() and warning(). Currently, error() throws an ex-
ception. If you do not “catch” that exception, the program will be simply aborted (after writing
a diagnostic message).

In many places, validity of input arguments or of the state of an object is checked by assert
macros. This code is only compiled when the NDEBUG preprocessor macro is not defined (for
isntance, when setting CMAKE BUILD TYPE to Debug), such that a production version of the pro-
grams is not slowed down. If an assertion is false, the program aborts with info on the file and
line number where the assertion failed.

3.8 C++ conventions

STIR uses C++-17 and is compatible with C++-20 to the best of our knowledge. For legacy
reasons, we have some preprocessor macros (see stir/common.h) to define the stir namespace (see
below). These should disappear at a later development stage of the library.

We use override for virtual functions in derived classes. This is clearer, less error-prone and
avoids compiler warnings.

STIR has a very long history. Lots of code was written pre-C++-11. We gradually simplify
code when editing. This is definitely visible for code using iterators, which could be simplified by
using auto as in this guide. It is a long term project to remove all compiler warnings from the
code. Please help.

3.9 Advanced (?) C++ features used

This section describes some C++ features used in STIR that might not be so familiar to non-C++
programmers.

3.9.1 Templates

The library uses templates very often. This allows us to write ’generic’ code, independent of
specific types. For instance, multi-dimensional arrays correspond to

template <int num_dimensions, typename elemT>

class Array;

To avoid linking problems, the templates which we use are explicitly instantiated in the relevant
.cxx files. If a user needs other types, (s)he will have to add the instantiations. In some cases,
this is not necessary as all methods of a template class are inlined, or the actual definition is in a
.txx file that you can include.
We do use partial class template specialisation in some places. However, (very ugly) work-arounds
are provided for compilers that do not support this feature (although these areee being gradually
removed).
Very occasionally we use member templates.

3.9.2 Run Time Type Information

Another C++ feature that we use is Run Time Type Information (RTTI). We almost exclusively
use this to check validity of pointer (or reference) casts down a hierarchy (’down-casting’). See
section 8 for an example.

3.9.3 Iterators

An important C++ concept, used fairly often in STIR, is an iterator. The easiest way to think
about iterators is as a sort of generalised pointer, used to iterate through a collection of objects
of the same type. For instance, the following code would add 2 to all the elements of a vector:

8

void f(vector<int>& v)

{

for (auto iter = v.begin(); iter != v.end(); ++iter)

*iter += 2;

}

So, just as pointers, you increment an iterator to go to the next element of the vector, and you
use *iter to access the object that the iterator refers to. However, the advantage is that the above
code would just as well work for any other type of collection, as long as it provides an iterator
interface. So, typical code in C++ would look as follows:

template <class Container>

void f(Container& v)

{

for (auto iter = v.begin(); iter != v.end(); ++iter)

*iter += 2;

}

Iterators are used with great success in the C++ Standard Template Library (STL), and STIR
provides iterators for its container classes. In particular, for multi-dimensional arrays, it is possible
to iterate through the array in 2 ways: using Array<n,T>::iterator whose iterators point to arrays
of dimensions n-1, or using Array<n,T>::full iterator which essentially provides a one-dimensional
look at the whole array. So, adding 2 to all the elements of a multi-dimensional array can be done
as follows

template <int n, class elemT>

void f(Array<n,elemT>& a)

{

for (auto iter = a.begin_all();

iter != a.end_all(); ++iter)

*iter += 2;

}

Note that use of the begin all() and end all() members which return full iterator objects.
Of course, the above function is just an illustration, as in STIR this can be done by using:

Array<n,elemT> a = ...;

a += 2;

3.9.4 Shared pointers and other smart pointers

STIR uses the shared ptr class considerably. Shared pointers are a specific type of ’smart point-
ers’. These have the advantage that they essentially clean up after you. That is, you do not have
to call delete on them. They are even exception proof (something which you cannot achieve with
an ordinary pointer). Generally, the destructor of the smart pointer will make sure that the object
it points to is deleted (when appropriate).
std::unique ptr is a standard smart pointer class which is suitable for pointers to objects where
there’s only one smart pointer for each object. Unfortunately, a lot of STIR was written pre-C++-
11 and we do not use this smart pointer class too much, and generally use shared ptr instead.
This is somewhat unfortunate as these two smart pointers are generally quite different concepts.

shared ptr is a wrapper around the std (or boost5) smart pointer class which is suitable when
there are (potentially) more than one pointer pointing to the same object. It keeps a reference
count such that the object is (only) deleted when the last shared pointer that references it is
destructed.

5Boost smart pointer are probably no longer supported, and will no longer be from STIR 6.1.

9

Caveat: if you modify the object of 1 shared ptr, the change obviously applies to all shared ptrs
sharing that object.
Caveat: if you assign an ordinary pointer to a shared ptr, you cannot delete the ordinary pointer
anymore (it will be done by the shared ptr). As a consequence, you cannot assign an ordinary
pointer twice to a shared ptr. It is thus better to go all the way, and not have any ordinary
pointers anymore.
Caveat: do not initialise a shared ptr with a pointer that cannot/should not be deleted. For
instance, initialising it with the address of a local variable, or even a reference, will cause a delete
on an object that is not allocated on the heap, and so probably crash your program.

It is clear that smart pointers are very useful, but also somewhat dangerous. For this reason,
most classes do not return shared ptrs to their members (even if they store one). Instead, they
return a pointer to a const object. This prevents a user of a class to inadvertently change members
of the class-object. This does involve a memory/performance penalty when the user then needs
to create a shared ptr himself. For example, you’ll see code like this

ProjData proj_data(...);

ProjDataInfo const * proj_data_info_ptr =

proj_data.get_proj_data_info_ptr();

shared_ptr<ProjDataInfo> new_proj_data_info_sptr(proj_data_info_ptr->clone());

// now do something with new_proj_data_info_sptr

We provide the convenience function stir::is null ptr() to test if a pointer is ‘null’, i.e. does
not point to anything. is null ptr works with ordinary pointers, shared ptrs and unique ptrs. Use
it to avoid that your code depends on what type of (smart) pointer you are using. Note however
that since C++-11, it is more convenient to use the automatic conversion to bool.

3.10 Generic functionality of STIR classes

This is a (very incomplete) section describing some functionality that many STIR classes have in
common.

3.10.1 Copying objects

When using pointers or references to objects of an abstract type, you can copy them using clone(),
see section 3.9.4.

When you only want to create an object of the same characteristics, but without copying the
data itself (e.g. images of the same size), use get empty copy().

3.10.2 Comparing objects

Many STIR classes implement comparison using the usual == and != operators. The implemen-
tation of these operators is somewhat tricky in class hierarchies. We try to follow the approach
described in Overriding the C++ Operator==, An approach that uses the Template Method de-
sign pattern By Daniel E. Stevenson and Andrew T. Phillips, Dr. Dobb’s Journal, June 2003,
http://www.ddj.com/184405409.

For some classes, you might want to check only if two objects are of the same type. For
instance, if images have the same sizes, origin etc, but not necessarily the same voxel values. This
can be done using the member function has same characterics.

3.10.3 Parsing from text files

Many class-hierarchies allow to construct an object by parsing a text file, which uses an Interfile-
like syntax. Examples are given in the User’s guide. see section 6.

All these classes (and some others) have a member function parameter info() which returns
a string with all parameters of the object.

10

http://www.ddj.com/184405409

Note that many STIR classes are not completely constructed by parsing. Usually, it is necessary
to call a set up function to make the object usable.

3.10.4 typedefs

Many class hierarchies use the same typedefs. For example:

class ProjDataInfo

{

protected:

typedef ProjDataInfo root_type; // root of hierarchy

};

class ProjDataInfoCylindrical: public ProjDataInfo

{

private:

typedef ProjDataInfo base_type;

typedef ProjDataInfoCylindrical self_type;

};

4 CUDA support

STIR 6.2 introduced first versions of some CUDA code. The include file cuda utilities.h

contains some helpers classes to copy arrays to/from the device. This is still work-in-progress as
objects cannot remain on the device.

5 Overview of classes

This section provides an overview of the main ingredients of the library. Detailed description of
these classes is in the documentation. Below we only mention some general features.

5.1 Images

Iterative algorithms generally assume that the activity density can be discretised in some way.
That is, the continuous density can be approximated by having a linear combination of some basis-
functions. The reconstruction problem will try to estimate the coefficients λijk of the discretised
density∑

ijk λijk bijk(x̂)
The base class corresponding to this kind of data is DiscretisedDensity.

We assume that the set of basisfunctions can be characterised by 3 indices6 (ijk) such that i
runs over a range of integers i1..i2,j runs over a similar range that can however depend on i,
and k runs over a similar range that can depend on i and j. This concept of ranges is embodied
in the IndexRange class. Multi-dimensional arrays which have such ranges are encoded by the
Array class. This forms the data structure for the set of coefficients of the basisfunctions, hence
DiscretisedDensity is derived from the Array.

In most useful cases, the basisfunctions will be translations of a single function b(x) (although
scaling etc could occur depending on ijk). This means that the discretisation has a certain grid,
corresponding to the centre of the basisfunctions. This structure is the next level in the image
hierarchy. Currently we have the class DiscretisedDensityOnCartesianGrid to implement the case
where the grid is formed by an orthogonal set of vectors. Another case would be e.g. Discretised-
DensityOnCylindricalGrid (for a cylindrical coordinate system), but we have not implemented

6Actually most of the image hierarchy is templated in the number of dimensions. This means it can be
used for 2D and 3D images, but also for higher dimensional cases (say temporal information).

11

this yet.
The next level in the hierarchy is then finally the specification of the basis functions themselves.
We currently have only voxels and pixels, but another useful case would be to use Kaiser-Bessel
functions as the translated basisfunction b(x) (this is called Blobs in the literature). This leads us
to the example image hierarchy in Figure 5.

Figure 5: Hierarchy of classes for images. Only two of the bottom classes are currently imple-
mented.

Although a Cartesian grid seems the logical choice for images, there are two reasons why one
would like to use different types of grid. One important reason would be sampling efficiency. As an
example, in 3D one needs less sampling points with a BCC grid while still being able to represent
the same spatial frequencies. This becomes particularly important when using more complicated
basis functions than voxels, like Kaiser-Bessel functions (’blobs’). In this case, calculations to
perform the projections are much more expensive, so having less grid points becomes important.
A second reason for changing the image grid is to increase the symmetry of the projection matrix.
For example, for cylindrical scanners using a cylindrical grid would maximise the amount of
repetition in the projection matrix. In particular, this would allow even for large PET scanners
pre-calculation of the ’independent’ part of the projection matrix, and loading it completely into
memory when doing the reconstruction. This will not only speed up the reconstruction, but also
enable more accurate models of the acquisition to be used, resulting in potentially better resolution
and noise behaviour. We believe that this hierarchy can accommodate all known cases used for
reconstructions in 3D PET.

5.2 Projection data classes

Different manufacturers use different sampling of projection space. As an example, the HiDAC
uses ’polar’ sampling. Similarly, Single Photon Emission Tomography (SPET) or Computed To-
mography (CT) data are very similar to PET. By having projection data classes that allow for
different geometries and file formats, our library should be useful for these image modalities as
well.
The general class to access projection data is called ProjData. As in 3D-PET, the projection data
are potentially huge, we do not generally store the whole data in memory. Instead, ProjData has
methods for getting subsets of the data, i.e. SegmentByView, SegmentBySinogram, Viewgram,
Sinogram, RelatedViewgrams (see section 5.4.1). In addition, the ProjData class provides access
to a ProjDataInfo object (see Figure 6). This object completely describes the geometry of the
data.

Different file formats (or potentially other types of projection data) are handled by having
derived classes of ProjData, which provide specific implementations for the data access methods.
This hierarchy is at the moment very simple, but can easily be extended to accommodate different
file formats.

Currently missing is support for fan-beam data.
List-mode data is supported as well. See the Listmode base-class and its hierarchy.

12

Figure 6: Hierarchy of classes for (geometric) information of the projection data.

Figure 7: File formats for projection data

5.3 Data (or image) processor hierarchy

We provide a hierarchy for functions that modify an image, e.g. by filtering or thresholding it.
The base class is DataProcessor, which is templated in DataT, to allow using other types, not only
images. Aside from the virtual functions that specify the interface to an image processor, it also
provides the basics for a registry of all data processors. See section 9 for some details. Note that
the registry is specific to every DataT.

5.4 Projector classes

The next important type of ingredient for an iterative algorithm are the projection operations.
The forward projection models the measurement. Generally, reconstruction algorithms are some
kind of inversion procedure for the following problem

yb =
∑
v

Pbvλv

where yb are the measured data. The exact interpretation of the projection matrix depends
on the algorithm (it is most of the time probabilistic, in the sense that the above equation would
only hold ’on average’). However, this need not concern us here.
Many algorithms (in particular EM-type algorithms) can be written solely in terms of multiplica-
tion with the projection matrix (forward projection) or with its transpose (back projection). This
is why we have a ForwardProjectorByBin and BackProjectorByBin hierarchy. The basic objects
handled by these projector classes are RelatedViewgrams and (a derived class from) Discretised-
Density. Other algorithms (for instance ART or listmode algorithms) need more detailed access
to the elements of the projection matrix, and hence will work with a ProjMatrixByBin object7.

7Some algorithms would need column-wise access to the projection matrix (i.e. by voxels). We did not
implement any of these algorithms, so we do not have appropriate projection classes for them. Modification
of the row-wise classes is straightforward though.

13

5.4.1 Symmetries

An important feature of geometric projectors is that several parts of the projection matrix are
the same. This is because different (generalised) voxels and bins are related by symmetry. It is
important to make use of these symmetries for two reasons. It allows storing only a part of the
projection matrix (useful for disk storage and caching), and in on-the-fly projection operations it
can be used to speed up the computation, as there is no need to recompute the related elements.
As the number of projection data elements related by symmetry depends on the specific geometries
(e.g which class derived from DiscretisedDensity is used), we need classes (e.g. RelatedViewgrams)
that store all related data, classes for describing the symmetries (e.g. DataSymmetriesForViewSeg-
mentNumbers), and the necessary operations (SymmetryOperation).
At the moment, the only symmetries implemented are specific for Cartesian grids. A discussion
of these symmetries is presented in [Par4.1], but also in the online documentation.

5.4.2 ForwardProjectorByBin hierarchy

We provide two derived classes of ForwardProjectorByBin:

• ForwardProjectorByBinUsingRayTracing computes the Pbv elements as the length of inter-
section of one Line Of Response with the voxel. The actual implementation uses a version
of Siddon’s algorithm, enhanced to use all possible symmetries. This implementation was
discussed in [Par4.1].

• ForwardProjectorByBinUsingProjMatrix performs forward projection for any ProjMatrix.
Indeed, all functionality is already provided by the ProjMatrix class. The current class only
provides the implementation of the ForwardProjectorByBin interface, such that algorithms
can use any ProjMatrix object available.

Figure 8: Forward projectors

This hierarchy is uses the registry mechanism discussed in section 9.

5.4.3 BackProjectorByBin hierarchy

This is very similar to the previous section. We provide two derived classes of BackProjectorByBin:

• BackProjectorByBinUsingInterpolation computes the Pbv elements via interpolation between
the projection data for the LOR through the centre of the voxel. We have two different
interpolation mechanisms (linear, and piece-wise linear) as discussed in [Par4.1].

• BackProjectorByBinUsingProjMatrix performs back projection for any ProjMatrixByBin.

Figure 9: Back projectors

This hierarchy is uses the registry mechanism discussed in section 9.

14

5.4.4 ProjMatrixByBin hierarchy

This is a base class for row-wise access to the projection matrix Pbv. This class provides 2 essential
mechanisms aside from the virtual functions that will be used to get the row of the matrix:

• It can cache the elements of the projection matrix. This caching is obviously useful if you can
store the part of the matrix that you need in memory (for instance, a slave might not need
the whole matrix). However, even if you cannot store the whole matrix, most algorithms
need access to a subset of these elements more than once (for instance, OSEM would need
them for forward projecting and for back projecting). Caching can be disabled.

• The application of symmetries is provided at base-class level: the derived classes do not have
to bother about this, and can concentrate on computing the ’independent’ part of Pbv.

At the moment, we have the following derived classes:

• ProjMatrixByBinUsingRayTracing uses essentially the same (although more flexible) im-
plementation as the on-the-fly ForwardProjectorByBinUsingRayTracing, but returns the
row of the projection matrix. However, because symmetries are not handled ’in-line’, and ele-
ments need to be stored, using a ProjMatrixByBinUsingRayTracing object for forward pro-
jection is in some cases not as efficient as using ForwardProjectorByBinUsingRayTracing.

• ProjMatrixByBinUsingInterpolation implements the same as BackProjectorByBinUsingInterpolation,
but is much slower to initialise.

• ProjMatrixByBinFromFile handles the case where the projection matrix is stored on disk
[not distributed yet]. Because of the support provided by ProjMatrixByBin, only the ’in-
dependent’ part of the projection matrix needs to be stored. Our current implementation
does not yet provide a very compact format for storing the elements (although they are of
course stored sparsely).

• ProjMatrixByBinSPECTUB is for parallel hole SPECT

• ProjMatrixByBinPinholeSPECTUB is for multi-pinhole SPECT

Figure 10: Projection matrix classes

This hierarchy uses the registry mechanism discussed in section 9.

5.4.5 ProjMatrixElementsForOneBin

This class provides sparse storage for a row of the projection matrix. It has methods to access
the data using an STL-style iterator (which is essentially a generalised pointer). This means that
the actual way to store the data is hidden from the user. In principle, this format could be very
compact, or alternatively very efficient. At the moment, we provide a format that is somewhere
in between. For instance, image indices are not stored incrementally, as although it would allow
very compact storage, it is detrimental for speed.

15

5.5 Objective functions

Many iterative (reconstruction) algorithms can be formulated in terms of an objective function,
which is the algorithms tries to maximise (or minimise). Since STIR 2.0, this is implemented as a
class hierarchy based on GeneralisedObjectiveFunction, where we use the convention that the
objective function is maximised.

Some iterative algorithms use an ’objective function’ only in a loose sense. They might for
instance allow generalisations which no longer optimise a function. For example in the case of
EMML with non-matching forward and back projectors, the ’gradient’ that is computed is gen-
erally not the gradient of the log-likelihood that corresponds to the forward projector. However,
one hopes that it still points towards the optimum. The corresponding objective function is im-
plemented in the classes
PoissonLogLikelihoodWithLinearModelForMeanAndProjData for projection data and PoissonLogLikelihoodWithLinearModelForMeanAndListModeDataWithProjMatrixByBin

for list-mode data. There are classes for dynamic and gated data as well.
There can be different objective function that use common operations. For instance, the

objective function could implement a least squares criterion, or a Poisson log-likelihood. Both of
these have a model for the mean of the measured data (given an image). Generally speaking, STIR
implements those common operations using a separate class. As an example, projection operations
are implemented via a pointer to a ProjectorByBinPair, which in itself is a small class hierarchy
using either a ProjMatrixByBin object, or a ForwardProjectorByBin and BackProjectorByBin

pair.
Often, one includes a penalty (or prior) in the objective function (see doxygen documentation

for the class GeneralisedPrior). The penalty is expected to be a function that increases with
higher penalty, so it will be subtracted from the unregularised case.

See the doxygen documentation GeneralisedObjectiveFunction for more details.

5.6 Reconstruction classes

The final ingredient for performing reconstructions is the reconstruction algorithm itself. We also
have a hierarchy for this, as many iterative algorithms are similar, and differ only in some minor
steps. We do not discuss the actual ’leaves’ of the Reconstruction tree here.
The tree starts at the abstract Reconstruction base class. Classes ending in “Reconstruction”
are abstract base classes for a family of algorithms. Classes including the name of an algorithm are
concrete ones whose principal purpose is to implement the reconstruction method of the algorithm.

Certain algorithms will only work with particular objective functions, while others (such as
gradient ascent) might work with arbitrary objective functions.

This arrangement gives the users of the library a flexible range of implementation choices,
allowing them to experiment with new algorithms and new variations of old ones with minimal
coding effort.

The Reconstruction hierarchy is (since STIR 2.0) templated in TargetT. This is the type of
the output, i.e. normally the image type. Templating this type gives flexibility to have different
output-types, such as parametric images or even normalisation factors.

6 Parsing from text files (or strings)

Many STIR classes are based on the ParsingObject class, and hence are able to

• ask the parameters to the user interactively

• read the parameters from an Interfile-style file

• return parameter info such that an Interfile-style input file can be created from the current
set of parameters.

In the simplest case, the only thing you need to do is to add the variables and keywords to the
keymap. All functionality will then follow. See the following example.

16

class A : public ParsingObject

{

private:

typedef ParsingObject base_type;

int number; float a;

void initialise_keymap() override

{

base_type::initialise_keymap();

this->parser.add_start_key("My Class Parameters");

this->parser.add_key("number", &number);

this->parser.add_key("width", &a);

this->parser.add_stop_key("END My Class Parameters");

}

void set_defaults() override

{

base_type::set_defaults();

// specify defaults for the parameters in case they are not set.

number = 1;

a = 2.4F;

}

bool post_processing() override // will be renamed to post_parsing()

{

// do some checks and handle some extra variables

return false; // everything was ok

}

};

int main(int argc, char **argv)

{

A a;

// parse a file (first argument on the command line)

a.parse(argv[1]);

// list them back to cout

std::cout << a.parameter_info();

return EXIT_SUCCESS;

}

Check the doxygen documentation for ParsingObject.

7 IO

7.1 Images

For images, output file formats and (since version 2.0) input file format are represented by ob-
jects as well, as instantiations of classes derived from OutputFileFormat and InputFileFormat

respectively. All of the file formats supported by STIR are stored in registries (see section 9).
Currently recommended way to read an image is as follows:

typedef DiscretisedDensity<3,float> DataType ;

std::unique_ptr<DataType> density_aptr = read_from_file<DataType>(filename);

17

You will have to include stir/IO/read from file.h for this to work. The function read from file

will open the file, read an initial block of data, check if that corresponds to the signature of any
of the file formats in the default registry, and use the first matching file format to read the data.

For output, you can use

write_to_file(filename, density);

You will have to include stir/IO/write to file.h for this to work. This will write using the
default output file format and is equivalent to the following:

auto output_format_sptr =

OutputFileFormat<DataType >::default_sptr();

output_format_sptr->write_to_file(filename, density);

You will have to include stir/IO/OutputFileFormat.h for this to work. Currently, the default
output file format in STIR is Interfile (see the User’s Guide).

At present, STIR does not provide a way to open an image file for reading and writing.
Patient/study information etc is currently ignored. More dangerously, image orientation as well.

It is relatively straightforward to add a new file format by deriving a new class from InputFileFormat

(for input), and adding that to the default registry (see section 9 for more details).

7.2 Numerical arrays

There are some functions to read/write numerical vectors/arrays from file. Check stir/IO/read data.h

(and write data.h) for binary IO, and stir/stream.h for text-based IO.

7.3 Projection data

At present, there is no registry yet for file formats of projection data. For reading, use

shared_ptr<ProjData> proj_data_sptr = ProjData::read_from_file(filename);

This has an optional argument for read/write access to the file.
For writing, you could use

ProjDataInterfile proj_data(proj_data_info_sptr, filename);

We currently have no easy way to copy all data across from one ProjData object to another. You
will have to write an explicit loop over segments.

7.4 Dynamic or gated data

Data should have an ExamInfo with a TimeFrameDefinitions object. You can also use the
get time frame info utility. There is no equivalenet yet for gating fractions.

8 Using class hierarchies

The main strength of object-oriented programming is that you can write code that is as generic as
possible8. In STIR, we have tried to use this feature as much as possible (although there are still
remaining generalisations to be implemented). This works by having a base class and a bunch of
derived classes. Examples of class hierarchies are given above. The question is however how you
use these hierarchies. Some attempt is given here to answer this, but of course, for serious work,
you really should read a good C++ book.
We will use the DiscretisedDensity hierarchy as an example, but the same holds for nearly all
other hierarchies in STIR (or indeed C++). In addition, you will see some templates being used.

8In C++, another very powerful way to write generic code are templates, see section 3.9.

18

Rule 1: You should try to write your code using the type of the base-class. If this is not possible,
use a class as close to the base-class as you can.
Example: If you have a function that manipulates images, write it in terms of DiscretisedDensity,
not of VoxelsOnCartesianGrid.
Rule 2: Pass references or smart pointers as arguments of functions. Use references if you
can (such that your code would work for any type of pointer). Never (or almost never) return
references, but return smart pointers (or a const pointer to an object that is guaranteed to stay
alive long enough).
Example:

template <int num_dimensions, typename elemT>

shared_ptr< DiscretisedDensity<num_dimensions, elemT> >

do_something(const DiscretisedDensity<num_dimensions, elemT>& density1,

const DiscretisedDensity<num_dimensions, elemT>& density2);

This is necessary, as you generally cannot construct an object of the type of the base-class.
Similarly, it is impossible to copy an object of a base-class. This is solved by using the virtual
copy constructor idiom:

shared_ptr< DiscretisedDensity<3,float> > new_density_sptr(density.clone());

This constructs an object of the same type as the given density.
Of course, many functions do need to know the actual type of the parameters, either because
they can work with only one type (for instance, ForwardProjectorByBinUsingRayTracing handles
only VoxelsOnCartesianGrid), or because the processing will be different for different types. This
can be solved by using C++ Run Time Type Information (RTTI), preferably in the form of
dynamic cast.

template <typename elemT>

void f(DiscretisedDensity<3, elemT>& density)

{

auto voxels_ptr =

dynamic_cast< VoxelsOnCartesianGrid<elemT> * > (&density);

if (!voxels_ptr)

error("f: can only handle images of type VoxelsOnCartesianGrid");

...

}

Note that dynamic cast of pointers allows easy checking if the types matched. When using
references, a non-matching type will cause an exception to be thrown. There currently is no code
in STIR using/catching exceptions, so if you do not catch the exception yourself, your program
will abort mysteriously.

9 Registries of classes

Several class hierarchies in STIR keep a registry of all leaf derived classes (i.e. classes at the end of
the hierarchy). This registry allows the user to select at run-time which image processor, projector,
matrix, output file format etc. (s)he wants to use. It is fairly easy to add your own leaf class to
the hierarchy such that it will be added to the registry. How to do this is briefly described here,
but see the doxygen documentation of classes RegisteredObject and RegisteredParsingObject

and the example below.
The recommended way to add your own class (as always) is to take a look at an existing leaf in

the hierarchy, copy the files and change what you need. Also make sure you new class gets linked
in by adding it to one of existing *registries.cxx files, although it is probably better to put your
own additions in separate files such that you can easily import a new version of STIR. See section
10 for information on how to do that.

19

9.1 How does the STIR implementation of registries work?

The RegisteredObject class takes care of finding your class etc, but it will only do that if you
have registered your own class. In an attempt to avoid having to do this explicitly, we currently
use the following scheme:

• creating a variable of type yourClass::RegisterIt will add yourClass to the registry as
long as this variable persists.

• we put that variable in a separate source file and declare it static. This means it will be
“initialised” (i.e. its constructor will be called, which actually does the registration) before
the main program starts.

• the special source file needs to be added explicitly to the list of files to link with9. This is
currently done by adding the file to the STIR REGISTRIES CMake variable.

10 Extending STIR with your own files

(See the section on using STIR in an external project in the User’s Guide if you just want to use
STIR functionality in your own work.)

If you want to let STIR use your own extra classes, e.g. if you added your own filter or prior and
want to use that during reconstruction, you can do this while keeping your own work independent
of the STIR sources.

• Put all your files in a separate folder (which can be outside the STIR tree) or in STIR/src/local
(the distribution will never contain any files in that directory). Let us call your directory
mySTIRext as an example.

• Create a file mySTIRext/extra stir dirs.cmake with CMake statements, in particular a
list of your subdirectories. For instance,

add my include directory to compiler switches (or better: use target_include_directories)

include_directories(include)

check CMakeLists in next directory

note: 2nd argument needs to have different name than any of the existing STIR libraries

add_subdirectory(${STIR_LOCAL}/buildblock my_buildblock)

add registries (if you have any)

list(APPEND STIR_REGISTRIES

${STIR_LOCAL}/buildblock/my_registries.cxx)

add to list of libraries to include in linking

list(APPEND STIR_LIBRARIES my_buildblock)

copy variables to PARENT_SCOPE

SET(STIR_REGISTRIES ${STIR_REGISTRIES} PARENT_SCOPE)

SET(STIR_LIBRARIES ${STIR_LIBRARIES} PARENT_SCOPE)

where buildblock is the name of your subdirectory and my buildblock is a name for the
sub-directory where CMake will build the files (make sure the latter is different from any
sub-directories in STIR/src).

9 If the file is added to a library, many linkers will think that it only contains variables which are not referenced
by anything else, so will discard it from the linking, and hence the relevant constructor will never be called.

20

• Put in each of your subdirectories a file called CMakeLists.txt which list all files you want
to compile. This file have to be in a specific (but simple) format. The easiest way to do
this is to copy for instance buildblock/CMakeLists.txt, utilities/CMakeLists.txt or
test/CMakeLists.txt and change the list of filenames. For instance, an extra library would
be specified like this:

set(dir my_buildblock)

set (dir_LIB_SOURCES ${dir}_LIB_SOURCES)

set(${dir_LIB_SOURCES}

my_source1.cxx

my_source2.cxx

)

declare dependencies on other STIR libraries, for instance

target_link_libraries($(dir) PUBLIC buildblock)

include(stir_lib_target)

• Re-run CMake and set the CMake variable STIR LOCAL to the directory where your ex-
tra stir dirs.cmake file (i.e. mySTIRext in this example), the result will be that, when
you (re-)build STIR, your files will be included in the normal build/test process.

As discussed in section 9, if you implement a projector, filter or similar, you will need to add it
to its relevant registry such that normal STIR utilities can use it at run-time. As an example, let
us say you have written a class that implements a different output fileformat. You could create a
new file my registry.cxx with content like this

#include "myOutputFileFormat.h"

static myOutputFileFormat::RegisterIt dummy1;

If you add that to the STIR REGISTRIES variable in your extra stir dirs.cmake as above, every-
thing should work as expected.

11 Contributing to STIR

See STIR/CONTRIBUTING.md and documentation/devel/README.md for more information on edi-
tor settings etc.

11.1 Continuous integration testing

We use GitHub Actions and Appveyor for testing of every pull-request that was submitted on
GitHub. PRs need to pass all checks before they will be accepted of course. To help debugging,
we upload recon test pack log files as artefacts on GitHub if a job fails. You can see these in
the Summary of every job that was triggered.

12 Conclusion

In many cases, a reconstruction algorithm does not have to know about the type of the image it
gets. In our set-up this means it can/should be implemented in terms of a DiscretisedDensity ob-
ject, and ForwardProjectorByBin and BackProjectorByBin objects (or ProjMatrixByBin object).
This means that once for instance EM is implemented, it can be used on voxels, blobs, different
grids etc. without having to rewrite the algorithm itself (of course, the projectors do depend on
the actual type of image, so you would have to write those).

21

https://github.com/UCL/STIR/blob/master/CONTRIBUTING.md
https://github.com/UCL/STIR/blob/master/documentation/devel/README.md

The STIR library allows maximal code re-use when implementing new functionality. Its structure
and its documentation features make it into a unique resource for the PET/SPECT community.

22

	 Introduction
	Language support

	 General conventions
	 Units
	 Coordinate system for image data
	 Info on projection data

	 Code conventions
	 Configuration file
	 Namespace
	 Naming conventions
	 File conventions
	 Class definitions
	 Argument order conventions
	 Error handling
	C++ conventions
	 Advanced (?) C++ features used
	Templates
	Run Time Type Information
	 Iterators
	 Shared pointers and other smart pointers

	Generic functionality of STIR classes
	Copying objects
	Comparing objects
	Parsing from text files
	typedefs

	CUDA support
	 Overview of classes
	 Images
	 Projection data classes
	 Data (or image) processor hierarchy
	 Projector classes
	 Symmetries
	 ForwardProjectorByBin hierarchy
	 BackProjectorByBin hierarchy
	 ProjMatrixByBin hierarchy
	 ProjMatrixElementsForOneBin

	Objective functions
	 Reconstruction classes

	 Parsing from text files (or strings)
	 IO
	Images
	Numerical arrays
	Projection data
	Dynamic or gated data

	 Using class hierarchies
	 Registries of classes
	How does the STIR implementation of registries work?

	 Extending STIR with your own files
	Contributing to STIR
	Continuous integration testing

	 Conclusion

