STIR  6.3.0
gmock.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This is the main header file a user should include.
34 
35 // GOOGLETEST_CM0002 DO NOT DELETE
36 
37 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
38 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
39 
40 // This file implements the following syntax:
41 //
42 // ON_CALL(mock_object, Method(...))
43 // .With(...) ?
44 // .WillByDefault(...);
45 //
46 // where With() is optional and WillByDefault() must appear exactly
47 // once.
48 //
49 // EXPECT_CALL(mock_object, Method(...))
50 // .With(...) ?
51 // .Times(...) ?
52 // .InSequence(...) *
53 // .WillOnce(...) *
54 // .WillRepeatedly(...) ?
55 // .RetiresOnSaturation() ? ;
56 //
57 // where all clauses are optional and WillOnce() can be repeated.
58 
59 // Copyright 2007, Google Inc.
60 // All rights reserved.
61 //
62 // Redistribution and use in source and binary forms, with or without
63 // modification, are permitted provided that the following conditions are
64 // met:
65 //
66 // * Redistributions of source code must retain the above copyright
67 // notice, this list of conditions and the following disclaimer.
68 // * Redistributions in binary form must reproduce the above
69 // copyright notice, this list of conditions and the following disclaimer
70 // in the documentation and/or other materials provided with the
71 // distribution.
72 // * Neither the name of Google Inc. nor the names of its
73 // contributors may be used to endorse or promote products derived from
74 // this software without specific prior written permission.
75 //
76 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
77 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
78 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
79 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
80 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
81 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
82 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
83 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
84 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
85 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
86 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
87 
88 
89 // Google Mock - a framework for writing C++ mock classes.
90 //
91 // The ACTION* family of macros can be used in a namespace scope to
92 // define custom actions easily. The syntax:
93 //
94 // ACTION(name) { statements; }
95 //
96 // will define an action with the given name that executes the
97 // statements. The value returned by the statements will be used as
98 // the return value of the action. Inside the statements, you can
99 // refer to the K-th (0-based) argument of the mock function by
100 // 'argK', and refer to its type by 'argK_type'. For example:
101 //
102 // ACTION(IncrementArg1) {
103 // arg1_type temp = arg1;
104 // return ++(*temp);
105 // }
106 //
107 // allows you to write
108 //
109 // ...WillOnce(IncrementArg1());
110 //
111 // You can also refer to the entire argument tuple and its type by
112 // 'args' and 'args_type', and refer to the mock function type and its
113 // return type by 'function_type' and 'return_type'.
114 //
115 // Note that you don't need to specify the types of the mock function
116 // arguments. However rest assured that your code is still type-safe:
117 // you'll get a compiler error if *arg1 doesn't support the ++
118 // operator, or if the type of ++(*arg1) isn't compatible with the
119 // mock function's return type, for example.
120 //
121 // Sometimes you'll want to parameterize the action. For that you can use
122 // another macro:
123 //
124 // ACTION_P(name, param_name) { statements; }
125 //
126 // For example:
127 //
128 // ACTION_P(Add, n) { return arg0 + n; }
129 //
130 // will allow you to write:
131 //
132 // ...WillOnce(Add(5));
133 //
134 // Note that you don't need to provide the type of the parameter
135 // either. If you need to reference the type of a parameter named
136 // 'foo', you can write 'foo_type'. For example, in the body of
137 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
138 // of 'n'.
139 //
140 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
141 // multi-parameter actions.
142 //
143 // For the purpose of typing, you can view
144 //
145 // ACTION_Pk(Foo, p1, ..., pk) { ... }
146 //
147 // as shorthand for
148 //
149 // template <typename p1_type, ..., typename pk_type>
150 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
151 //
152 // In particular, you can provide the template type arguments
153 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
154 // although usually you can rely on the compiler to infer the types
155 // for you automatically. You can assign the result of expression
156 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
157 // pk_type>. This can be useful when composing actions.
158 //
159 // You can also overload actions with different numbers of parameters:
160 //
161 // ACTION_P(Plus, a) { ... }
162 // ACTION_P2(Plus, a, b) { ... }
163 //
164 // While it's tempting to always use the ACTION* macros when defining
165 // a new action, you should also consider implementing ActionInterface
166 // or using MakePolymorphicAction() instead, especially if you need to
167 // use the action a lot. While these approaches require more work,
168 // they give you more control on the types of the mock function
169 // arguments and the action parameters, which in general leads to
170 // better compiler error messages that pay off in the long run. They
171 // also allow overloading actions based on parameter types (as opposed
172 // to just based on the number of parameters).
173 //
174 // CAVEAT:
175 //
176 // ACTION*() can only be used in a namespace scope as templates cannot be
177 // declared inside of a local class.
178 // Users can, however, define any local functors (e.g. a lambda) that
179 // can be used as actions.
180 //
181 // MORE INFORMATION:
182 //
183 // To learn more about using these macros, please search for 'ACTION' on
184 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
185 
186 // GOOGLETEST_CM0002 DO NOT DELETE
187 
188 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
189 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
190 
191 #ifndef _WIN32_WCE
192 # include <errno.h>
193 #endif
194 
195 #include <algorithm>
196 #include <functional>
197 #include <memory>
198 #include <string>
199 #include <tuple>
200 #include <type_traits>
201 #include <utility>
202 
203 // Copyright 2007, Google Inc.
204 // All rights reserved.
205 //
206 // Redistribution and use in source and binary forms, with or without
207 // modification, are permitted provided that the following conditions are
208 // met:
209 //
210 // * Redistributions of source code must retain the above copyright
211 // notice, this list of conditions and the following disclaimer.
212 // * Redistributions in binary form must reproduce the above
213 // copyright notice, this list of conditions and the following disclaimer
214 // in the documentation and/or other materials provided with the
215 // distribution.
216 // * Neither the name of Google Inc. nor the names of its
217 // contributors may be used to endorse or promote products derived from
218 // this software without specific prior written permission.
219 //
220 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
221 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
222 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
223 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
224 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
225 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
226 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
227 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
228 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
229 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
230 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
231 
232 
233 // Google Mock - a framework for writing C++ mock classes.
234 //
235 // This file defines some utilities useful for implementing Google
236 // Mock. They are subject to change without notice, so please DO NOT
237 // USE THEM IN USER CODE.
238 
239 // GOOGLETEST_CM0002 DO NOT DELETE
240 
241 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
242 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
243 
244 #include <stdio.h>
245 #include <ostream> // NOLINT
246 #include <string>
247 #include <type_traits>
248 // Copyright 2008, Google Inc.
249 // All rights reserved.
250 //
251 // Redistribution and use in source and binary forms, with or without
252 // modification, are permitted provided that the following conditions are
253 // met:
254 //
255 // * Redistributions of source code must retain the above copyright
256 // notice, this list of conditions and the following disclaimer.
257 // * Redistributions in binary form must reproduce the above
258 // copyright notice, this list of conditions and the following disclaimer
259 // in the documentation and/or other materials provided with the
260 // distribution.
261 // * Neither the name of Google Inc. nor the names of its
262 // contributors may be used to endorse or promote products derived from
263 // this software without specific prior written permission.
264 //
265 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
266 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
267 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
268 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
269 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
270 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
271 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
272 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
273 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
274 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
275 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
276 
277 //
278 // Low-level types and utilities for porting Google Mock to various
279 // platforms. All macros ending with _ and symbols defined in an
280 // internal namespace are subject to change without notice. Code
281 // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't
282 // end with _ are part of Google Mock's public API and can be used by
283 // code outside Google Mock.
284 
285 // GOOGLETEST_CM0002 DO NOT DELETE
286 
287 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
288 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
289 
290 #include <assert.h>
291 #include <stdlib.h>
292 #include <cstdint>
293 #include <iostream>
294 
295 // Most of the utilities needed for porting Google Mock are also
296 // required for Google Test and are defined in gtest-port.h.
297 //
298 // Note to maintainers: to reduce code duplication, prefer adding
299 // portability utilities to Google Test's gtest-port.h instead of
300 // here, as Google Mock depends on Google Test. Only add a utility
301 // here if it's truly specific to Google Mock.
302 
303 #include "gtest/gtest.h"
304 // Copyright 2015, Google Inc.
305 // All rights reserved.
306 //
307 // Redistribution and use in source and binary forms, with or without
308 // modification, are permitted provided that the following conditions are
309 // met:
310 //
311 // * Redistributions of source code must retain the above copyright
312 // notice, this list of conditions and the following disclaimer.
313 // * Redistributions in binary form must reproduce the above
314 // copyright notice, this list of conditions and the following disclaimer
315 // in the documentation and/or other materials provided with the
316 // distribution.
317 // * Neither the name of Google Inc. nor the names of its
318 // contributors may be used to endorse or promote products derived from
319 // this software without specific prior written permission.
320 //
321 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
322 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
323 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
324 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
325 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
326 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
327 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
328 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
329 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
330 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
331 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
332 //
333 // Injection point for custom user configurations. See README for details
334 //
335 // ** Custom implementation starts here **
336 
337 // GOOGLETEST_CM0002 DO NOT DELETE
338 
339 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
340 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
341 
342 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
343 
344 // For MS Visual C++, check the compiler version. At least VS 2015 is
345 // required to compile Google Mock.
346 #if defined(_MSC_VER) && _MSC_VER < 1900
347 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
348 #endif
349 
350 // Macro for referencing flags. This is public as we want the user to
351 // use this syntax to reference Google Mock flags.
352 #define GMOCK_FLAG(name) FLAGS_gmock_##name
353 
354 #if !defined(GMOCK_DECLARE_bool_)
355 
356 // Macros for declaring flags.
357 # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
358 # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
359 # define GMOCK_DECLARE_string_(name) \
360  extern GTEST_API_ ::std::string GMOCK_FLAG(name)
361 
362 // Macros for defining flags.
363 # define GMOCK_DEFINE_bool_(name, default_val, doc) \
364  GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
365 # define GMOCK_DEFINE_int32_(name, default_val, doc) \
366  GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
367 # define GMOCK_DEFINE_string_(name, default_val, doc) \
368  GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
369 
370 #endif // !defined(GMOCK_DECLARE_bool_)
371 
372 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
373 
374 namespace testing {
375 
376 template <typename>
377 class Matcher;
378 
379 namespace internal {
380 
381 // Silence MSVC C4100 (unreferenced formal parameter) and
382 // C4805('==': unsafe mix of type 'const int' and type 'const bool')
383 #ifdef _MSC_VER
384 # pragma warning(push)
385 # pragma warning(disable:4100)
386 # pragma warning(disable:4805)
387 #endif
388 
389 // Joins a vector of strings as if they are fields of a tuple; returns
390 // the joined string.
391 GTEST_API_ std::string JoinAsTuple(const Strings& fields);
392 
393 // Converts an identifier name to a space-separated list of lower-case
394 // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
395 // treated as one word. For example, both "FooBar123" and
396 // "foo_bar_123" are converted to "foo bar 123".
397 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
398 
399 // GetRawPointer(p) returns the raw pointer underlying p when p is a
400 // smart pointer, or returns p itself when p is already a raw pointer.
401 // The following default implementation is for the smart pointer case.
402 template <typename Pointer>
403 inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
404  return p.get();
405 }
406 // This overloaded version is for the raw pointer case.
407 template <typename Element>
408 inline Element* GetRawPointer(Element* p) { return p; }
409 
410 // MSVC treats wchar_t as a native type usually, but treats it as the
411 // same as unsigned short when the compiler option /Zc:wchar_t- is
412 // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
413 // is a native type.
414 #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
415 // wchar_t is a typedef.
416 #else
417 # define GMOCK_WCHAR_T_IS_NATIVE_ 1
418 #endif
419 
420 // In what follows, we use the term "kind" to indicate whether a type
421 // is bool, an integer type (excluding bool), a floating-point type,
422 // or none of them. This categorization is useful for determining
423 // when a matcher argument type can be safely converted to another
424 // type in the implementation of SafeMatcherCast.
425 enum TypeKind {
426  kBool, kInteger, kFloatingPoint, kOther
427 };
428 
429 // KindOf<T>::value is the kind of type T.
430 template <typename T> struct KindOf {
431  enum { value = kOther }; // The default kind.
432 };
433 
434 // This macro declares that the kind of 'type' is 'kind'.
435 #define GMOCK_DECLARE_KIND_(type, kind) \
436  template <> struct KindOf<type> { enum { value = kind }; }
437 
438 GMOCK_DECLARE_KIND_(bool, kBool);
439 
440 // All standard integer types.
441 GMOCK_DECLARE_KIND_(char, kInteger);
442 GMOCK_DECLARE_KIND_(signed char, kInteger);
443 GMOCK_DECLARE_KIND_(unsigned char, kInteger);
444 GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
445 GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
446 GMOCK_DECLARE_KIND_(int, kInteger);
447 GMOCK_DECLARE_KIND_(unsigned int, kInteger);
448 GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
449 GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
450 GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT
451 GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT
452 
453 #if GMOCK_WCHAR_T_IS_NATIVE_
454 GMOCK_DECLARE_KIND_(wchar_t, kInteger);
455 #endif
456 
457 // All standard floating-point types.
458 GMOCK_DECLARE_KIND_(float, kFloatingPoint);
459 GMOCK_DECLARE_KIND_(double, kFloatingPoint);
460 GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
461 
462 #undef GMOCK_DECLARE_KIND_
463 
464 // Evaluates to the kind of 'type'.
465 #define GMOCK_KIND_OF_(type) \
466  static_cast< ::testing::internal::TypeKind>( \
467  ::testing::internal::KindOf<type>::value)
468 
469 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
470 // is true if and only if arithmetic type From can be losslessly converted to
471 // arithmetic type To.
472 //
473 // It's the user's responsibility to ensure that both From and To are
474 // raw (i.e. has no CV modifier, is not a pointer, and is not a
475 // reference) built-in arithmetic types, kFromKind is the kind of
476 // From, and kToKind is the kind of To; the value is
477 // implementation-defined when the above pre-condition is violated.
478 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
479 using LosslessArithmeticConvertibleImpl = std::integral_constant<
480  bool,
481  // clang-format off
482  // Converting from bool is always lossless
483  (kFromKind == kBool) ? true
484  // Converting between any other type kinds will be lossy if the type
485  // kinds are not the same.
486  : (kFromKind != kToKind) ? false
487  : (kFromKind == kInteger &&
488  // Converting between integers of different widths is allowed so long
489  // as the conversion does not go from signed to unsigned.
490  (((sizeof(From) < sizeof(To)) &&
491  !(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
492  // Converting between integers of the same width only requires the
493  // two types to have the same signedness.
494  ((sizeof(From) == sizeof(To)) &&
495  (std::is_signed<From>::value == std::is_signed<To>::value)))
496  ) ? true
497  // Floating point conversions are lossless if and only if `To` is at least
498  // as wide as `From`.
499  : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
500  : false
501  // clang-format on
502  >;
503 
504 // LosslessArithmeticConvertible<From, To>::value is true if and only if
505 // arithmetic type From can be losslessly converted to arithmetic type To.
506 //
507 // It's the user's responsibility to ensure that both From and To are
508 // raw (i.e. has no CV modifier, is not a pointer, and is not a
509 // reference) built-in arithmetic types; the value is
510 // implementation-defined when the above pre-condition is violated.
511 template <typename From, typename To>
512 using LosslessArithmeticConvertible =
513  LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
514  GMOCK_KIND_OF_(To), To>;
515 
516 // This interface knows how to report a Google Mock failure (either
517 // non-fatal or fatal).
518 class FailureReporterInterface {
519  public:
520  // The type of a failure (either non-fatal or fatal).
521  enum FailureType {
522  kNonfatal, kFatal
523  };
524 
525  virtual ~FailureReporterInterface() {}
526 
527  // Reports a failure that occurred at the given source file location.
528  virtual void ReportFailure(FailureType type, const char* file, int line,
529  const std::string& message) = 0;
530 };
531 
532 // Returns the failure reporter used by Google Mock.
533 GTEST_API_ FailureReporterInterface* GetFailureReporter();
534 
535 // Asserts that condition is true; aborts the process with the given
536 // message if condition is false. We cannot use LOG(FATAL) or CHECK()
537 // as Google Mock might be used to mock the log sink itself. We
538 // inline this function to prevent it from showing up in the stack
539 // trace.
540 inline void Assert(bool condition, const char* file, int line,
541  const std::string& msg) {
542  if (!condition) {
543  GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
544  file, line, msg);
545  }
546 }
547 inline void Assert(bool condition, const char* file, int line) {
548  Assert(condition, file, line, "Assertion failed.");
549 }
550 
551 // Verifies that condition is true; generates a non-fatal failure if
552 // condition is false.
553 inline void Expect(bool condition, const char* file, int line,
554  const std::string& msg) {
555  if (!condition) {
556  GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
557  file, line, msg);
558  }
559 }
560 inline void Expect(bool condition, const char* file, int line) {
561  Expect(condition, file, line, "Expectation failed.");
562 }
563 
564 // Severity level of a log.
565 enum LogSeverity {
566  kInfo = 0,
567  kWarning = 1
568 };
569 
570 // Valid values for the --gmock_verbose flag.
571 
572 // All logs (informational and warnings) are printed.
573 const char kInfoVerbosity[] = "info";
574 // Only warnings are printed.
575 const char kWarningVerbosity[] = "warning";
576 // No logs are printed.
577 const char kErrorVerbosity[] = "error";
578 
579 // Returns true if and only if a log with the given severity is visible
580 // according to the --gmock_verbose flag.
581 GTEST_API_ bool LogIsVisible(LogSeverity severity);
582 
583 // Prints the given message to stdout if and only if 'severity' >= the level
584 // specified by the --gmock_verbose flag. If stack_frames_to_skip >=
585 // 0, also prints the stack trace excluding the top
586 // stack_frames_to_skip frames. In opt mode, any positive
587 // stack_frames_to_skip is treated as 0, since we don't know which
588 // function calls will be inlined by the compiler and need to be
589 // conservative.
590 GTEST_API_ void Log(LogSeverity severity, const std::string& message,
591  int stack_frames_to_skip);
592 
593 // A marker class that is used to resolve parameterless expectations to the
594 // correct overload. This must not be instantiable, to prevent client code from
595 // accidentally resolving to the overload; for example:
596 //
597 // ON_CALL(mock, Method({}, nullptr))...
598 //
599 class WithoutMatchers {
600  private:
601  WithoutMatchers() {}
602  friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
603 };
604 
605 // Internal use only: access the singleton instance of WithoutMatchers.
606 GTEST_API_ WithoutMatchers GetWithoutMatchers();
607 
608 // Disable MSVC warnings for infinite recursion, since in this case the
609 // the recursion is unreachable.
610 #ifdef _MSC_VER
611 # pragma warning(push)
612 # pragma warning(disable:4717)
613 #endif
614 
615 // Invalid<T>() is usable as an expression of type T, but will terminate
616 // the program with an assertion failure if actually run. This is useful
617 // when a value of type T is needed for compilation, but the statement
618 // will not really be executed (or we don't care if the statement
619 // crashes).
620 template <typename T>
621 inline T Invalid() {
622  Assert(false, "", -1, "Internal error: attempt to return invalid value");
623  // This statement is unreachable, and would never terminate even if it
624  // could be reached. It is provided only to placate compiler warnings
625  // about missing return statements.
626  return Invalid<T>();
627 }
628 
629 #ifdef _MSC_VER
630 # pragma warning(pop)
631 #endif
632 
633 // Given a raw type (i.e. having no top-level reference or const
634 // modifier) RawContainer that's either an STL-style container or a
635 // native array, class StlContainerView<RawContainer> has the
636 // following members:
637 //
638 // - type is a type that provides an STL-style container view to
639 // (i.e. implements the STL container concept for) RawContainer;
640 // - const_reference is a type that provides a reference to a const
641 // RawContainer;
642 // - ConstReference(raw_container) returns a const reference to an STL-style
643 // container view to raw_container, which is a RawContainer.
644 // - Copy(raw_container) returns an STL-style container view of a
645 // copy of raw_container, which is a RawContainer.
646 //
647 // This generic version is used when RawContainer itself is already an
648 // STL-style container.
649 template <class RawContainer>
650 class StlContainerView {
651  public:
652  typedef RawContainer type;
653  typedef const type& const_reference;
654 
655  static const_reference ConstReference(const RawContainer& container) {
656  static_assert(!std::is_const<RawContainer>::value,
657  "RawContainer type must not be const");
658  return container;
659  }
660  static type Copy(const RawContainer& container) { return container; }
661 };
662 
663 // This specialization is used when RawContainer is a native array type.
664 template <typename Element, size_t N>
665 class StlContainerView<Element[N]> {
666  public:
667  typedef typename std::remove_const<Element>::type RawElement;
668  typedef internal::NativeArray<RawElement> type;
669  // NativeArray<T> can represent a native array either by value or by
670  // reference (selected by a constructor argument), so 'const type'
671  // can be used to reference a const native array. We cannot
672  // 'typedef const type& const_reference' here, as that would mean
673  // ConstReference() has to return a reference to a local variable.
674  typedef const type const_reference;
675 
676  static const_reference ConstReference(const Element (&array)[N]) {
677  static_assert(std::is_same<Element, RawElement>::value,
678  "Element type must not be const");
679  return type(array, N, RelationToSourceReference());
680  }
681  static type Copy(const Element (&array)[N]) {
682  return type(array, N, RelationToSourceCopy());
683  }
684 };
685 
686 // This specialization is used when RawContainer is a native array
687 // represented as a (pointer, size) tuple.
688 template <typename ElementPointer, typename Size>
689 class StlContainerView< ::std::tuple<ElementPointer, Size> > {
690  public:
691  typedef typename std::remove_const<
692  typename std::pointer_traits<ElementPointer>::element_type>::type
693  RawElement;
694  typedef internal::NativeArray<RawElement> type;
695  typedef const type const_reference;
696 
697  static const_reference ConstReference(
698  const ::std::tuple<ElementPointer, Size>& array) {
699  return type(std::get<0>(array), std::get<1>(array),
700  RelationToSourceReference());
701  }
702  static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
703  return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
704  }
705 };
706 
707 // The following specialization prevents the user from instantiating
708 // StlContainer with a reference type.
709 template <typename T> class StlContainerView<T&>;
710 
711 // A type transform to remove constness from the first part of a pair.
712 // Pairs like that are used as the value_type of associative containers,
713 // and this transform produces a similar but assignable pair.
714 template <typename T>
715 struct RemoveConstFromKey {
716  typedef T type;
717 };
718 
719 // Partially specialized to remove constness from std::pair<const K, V>.
720 template <typename K, typename V>
721 struct RemoveConstFromKey<std::pair<const K, V> > {
722  typedef std::pair<K, V> type;
723 };
724 
725 // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
726 // reduce code size.
727 GTEST_API_ void IllegalDoDefault(const char* file, int line);
728 
729 template <typename F, typename Tuple, size_t... Idx>
730 auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
731  std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
732  return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
733 }
734 
735 // Apply the function to a tuple of arguments.
736 template <typename F, typename Tuple>
737 auto Apply(F&& f, Tuple&& args) -> decltype(
738  ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
739  MakeIndexSequence<std::tuple_size<
740  typename std::remove_reference<Tuple>::type>::value>())) {
741  return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
742  MakeIndexSequence<std::tuple_size<
743  typename std::remove_reference<Tuple>::type>::value>());
744 }
745 
746 // Template struct Function<F>, where F must be a function type, contains
747 // the following typedefs:
748 //
749 // Result: the function's return type.
750 // Arg<N>: the type of the N-th argument, where N starts with 0.
751 // ArgumentTuple: the tuple type consisting of all parameters of F.
752 // ArgumentMatcherTuple: the tuple type consisting of Matchers for all
753 // parameters of F.
754 // MakeResultVoid: the function type obtained by substituting void
755 // for the return type of F.
756 // MakeResultIgnoredValue:
757 // the function type obtained by substituting Something
758 // for the return type of F.
759 template <typename T>
760 struct Function;
761 
762 template <typename R, typename... Args>
763 struct Function<R(Args...)> {
764  using Result = R;
765  static constexpr size_t ArgumentCount = sizeof...(Args);
766  template <size_t I>
767  using Arg = ElemFromList<I, Args...>;
768  using ArgumentTuple = std::tuple<Args...>;
769  using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
770  using MakeResultVoid = void(Args...);
771  using MakeResultIgnoredValue = IgnoredValue(Args...);
772 };
773 
774 template <typename R, typename... Args>
775 constexpr size_t Function<R(Args...)>::ArgumentCount;
776 
777 #ifdef _MSC_VER
778 # pragma warning(pop)
779 #endif
780 
781 } // namespace internal
782 } // namespace testing
783 
784 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
785 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
786 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
787 
788 // Expands and concatenates the arguments. Constructed macros reevaluate.
789 #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
790 
791 // Expands and stringifies the only argument.
792 #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
793 
794 // Returns empty. Given a variadic number of arguments.
795 #define GMOCK_PP_EMPTY(...)
796 
797 // Returns a comma. Given a variadic number of arguments.
798 #define GMOCK_PP_COMMA(...) ,
799 
800 // Returns the only argument.
801 #define GMOCK_PP_IDENTITY(_1) _1
802 
803 // Evaluates to the number of arguments after expansion.
804 //
805 // #define PAIR x, y
806 //
807 // GMOCK_PP_NARG() => 1
808 // GMOCK_PP_NARG(x) => 1
809 // GMOCK_PP_NARG(x, y) => 2
810 // GMOCK_PP_NARG(PAIR) => 2
811 //
812 // Requires: the number of arguments after expansion is at most 15.
813 #define GMOCK_PP_NARG(...) \
814  GMOCK_PP_INTERNAL_16TH( \
815  (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
816 
817 // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
818 // returns 0. Requires no more than 15 unprotected commas.
819 #define GMOCK_PP_HAS_COMMA(...) \
820  GMOCK_PP_INTERNAL_16TH( \
821  (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
822 
823 // Returns the first argument.
824 #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
825 
826 // Returns the tail. A variadic list of all arguments minus the first. Requires
827 // at least one argument.
828 #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
829 
830 // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
831 #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
832  GMOCK_PP_IDENTITY( \
833  GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
834 
835 // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
836 // evaluates to `0`.
837 //
838 // Requires: * the number of arguments after expansion is at most 15.
839 // * If the argument is a macro, it must be able to be called with one
840 // argument.
841 //
842 // Implementation details:
843 //
844 // There is one case when it generates a compile error: if the argument is macro
845 // that cannot be called with one argument.
846 //
847 // #define M(a, b) // it doesn't matter what it expands to
848 //
849 // // Expected: expands to `0`.
850 // // Actual: compile error.
851 // GMOCK_PP_IS_EMPTY(M)
852 //
853 // There are 4 cases tested:
854 //
855 // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
856 // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
857 // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
858 // Expected 0
859 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
860 // parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
861 //
862 // We trigger detection on '0001', i.e. on empty.
863 #define GMOCK_PP_IS_EMPTY(...) \
864  GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \
865  GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
866  GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \
867  GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
868 
869 // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
870 #define GMOCK_PP_IF(_Cond, _Then, _Else) \
871  GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
872 
873 // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
874 //
875 // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
876 // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
877 //
878 #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
879  GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
880 
881 // Evaluates to the number of arguments after expansion. Identifies 'empty' as
882 // 0.
883 //
884 // #define PAIR x, y
885 //
886 // GMOCK_PP_NARG0() => 0
887 // GMOCK_PP_NARG0(x) => 1
888 // GMOCK_PP_NARG0(x, y) => 2
889 // GMOCK_PP_NARG0(PAIR) => 2
890 //
891 // Requires: * the number of arguments after expansion is at most 15.
892 // * If the argument is a macro, it must be able to be called with one
893 // argument.
894 #define GMOCK_PP_NARG0(...) \
895  GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
896 
897 // Expands to 1 if the first argument starts with something in parentheses,
898 // otherwise to 0.
899 #define GMOCK_PP_IS_BEGIN_PARENS(...) \
900  GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
901  GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
902 
903 // Expands to 1 is there is only one argument and it is enclosed in parentheses.
904 #define GMOCK_PP_IS_ENCLOSED_PARENS(...) \
905  GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
906  GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
907 
908 // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
909 #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
910 
911 // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
912 // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
913 // Requires: * |_Macro| can be called with 3 arguments.
914 // * |_Tuple| expansion has no more than 15 elements.
915 #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \
916  GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
917  (0, _Macro, _Data, _Tuple)
918 
919 // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
920 // Empty if _K = 0.
921 // Requires: * |_Macro| can be called with 3 arguments.
922 // * |_K| literal between 0 and 15
923 #define GMOCK_PP_REPEAT(_Macro, _Data, _N) \
924  GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
925  (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
926 
927 // Increments the argument, requires the argument to be between 0 and 15.
928 #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
929 
930 // Returns comma if _i != 0. Requires _i to be between 0 and 15.
931 #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
932 
933 // Internal details follow. Do not use any of these symbols outside of this
934 // file or we will break your code.
935 #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
936 #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
937 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
938 #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
939 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \
940  GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
941  _1, _2, _3, _4))
942 #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
943 #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
944 #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
945 
946 // Because of MSVC treating a token with a comma in it as a single token when
947 // passed to another macro, we need to force it to evaluate it as multiple
948 // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
949 // define one per possible macro that relies on this behavior. Note "_Args" must
950 // be parenthesized.
951 #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
952  _10, _11, _12, _13, _14, _15, _16, \
953  ...) \
954  _16
955 #define GMOCK_PP_INTERNAL_16TH(_Args) \
956  GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
957 #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
958 #define GMOCK_PP_INTERNAL_HEAD(_Args) \
959  GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
960 #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
961 #define GMOCK_PP_INTERNAL_TAIL(_Args) \
962  GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
963 
964 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
965 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
966 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
967  0,
968 #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
969 #define GMOCK_PP_INTERNAL_INC_0 1
970 #define GMOCK_PP_INTERNAL_INC_1 2
971 #define GMOCK_PP_INTERNAL_INC_2 3
972 #define GMOCK_PP_INTERNAL_INC_3 4
973 #define GMOCK_PP_INTERNAL_INC_4 5
974 #define GMOCK_PP_INTERNAL_INC_5 6
975 #define GMOCK_PP_INTERNAL_INC_6 7
976 #define GMOCK_PP_INTERNAL_INC_7 8
977 #define GMOCK_PP_INTERNAL_INC_8 9
978 #define GMOCK_PP_INTERNAL_INC_9 10
979 #define GMOCK_PP_INTERNAL_INC_10 11
980 #define GMOCK_PP_INTERNAL_INC_11 12
981 #define GMOCK_PP_INTERNAL_INC_12 13
982 #define GMOCK_PP_INTERNAL_INC_13 14
983 #define GMOCK_PP_INTERNAL_INC_14 15
984 #define GMOCK_PP_INTERNAL_INC_15 16
985 #define GMOCK_PP_INTERNAL_COMMA_IF_0
986 #define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
987 #define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
988 #define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
989 #define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
990 #define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
991 #define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
992 #define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
993 #define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
994 #define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
995 #define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
996 #define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
997 #define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
998 #define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
999 #define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
1000 #define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
1001 #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
1002  _Macro(_i, _Data, _element)
1003 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
1004 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
1005  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
1006 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \
1007  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1008  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \
1009  (GMOCK_PP_TAIL _Tuple))
1010 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \
1011  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1012  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \
1013  (GMOCK_PP_TAIL _Tuple))
1014 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \
1015  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1016  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \
1017  (GMOCK_PP_TAIL _Tuple))
1018 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \
1019  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1020  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \
1021  (GMOCK_PP_TAIL _Tuple))
1022 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \
1023  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1024  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \
1025  (GMOCK_PP_TAIL _Tuple))
1026 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \
1027  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1028  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \
1029  (GMOCK_PP_TAIL _Tuple))
1030 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \
1031  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1032  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \
1033  (GMOCK_PP_TAIL _Tuple))
1034 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \
1035  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1036  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \
1037  (GMOCK_PP_TAIL _Tuple))
1038 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \
1039  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1040  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \
1041  (GMOCK_PP_TAIL _Tuple))
1042 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \
1043  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1044  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \
1045  (GMOCK_PP_TAIL _Tuple))
1046 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \
1047  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1048  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \
1049  (GMOCK_PP_TAIL _Tuple))
1050 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \
1051  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1052  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \
1053  (GMOCK_PP_TAIL _Tuple))
1054 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \
1055  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1056  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \
1057  (GMOCK_PP_TAIL _Tuple))
1058 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \
1059  GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1060  GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \
1061  (GMOCK_PP_TAIL _Tuple))
1062 
1063 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
1064 
1065 #ifdef _MSC_VER
1066 # pragma warning(push)
1067 # pragma warning(disable:4100)
1068 #endif
1069 
1070 namespace testing {
1071 
1072 // To implement an action Foo, define:
1073 // 1. a class FooAction that implements the ActionInterface interface, and
1074 // 2. a factory function that creates an Action object from a
1075 // const FooAction*.
1076 //
1077 // The two-level delegation design follows that of Matcher, providing
1078 // consistency for extension developers. It also eases ownership
1079 // management as Action objects can now be copied like plain values.
1080 
1081 namespace internal {
1082 
1083 // BuiltInDefaultValueGetter<T, true>::Get() returns a
1084 // default-constructed T value. BuiltInDefaultValueGetter<T,
1085 // false>::Get() crashes with an error.
1086 //
1087 // This primary template is used when kDefaultConstructible is true.
1088 template <typename T, bool kDefaultConstructible>
1089 struct BuiltInDefaultValueGetter {
1090  static T Get() { return T(); }
1091 };
1092 template <typename T>
1093 struct BuiltInDefaultValueGetter<T, false> {
1094  static T Get() {
1095  Assert(false, __FILE__, __LINE__,
1096  "Default action undefined for the function return type.");
1097  return internal::Invalid<T>();
1098  // The above statement will never be reached, but is required in
1099  // order for this function to compile.
1100  }
1101 };
1102 
1103 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
1104 // for type T, which is NULL when T is a raw pointer type, 0 when T is
1105 // a numeric type, false when T is bool, or "" when T is string or
1106 // std::string. In addition, in C++11 and above, it turns a
1107 // default-constructed T value if T is default constructible. For any
1108 // other type T, the built-in default T value is undefined, and the
1109 // function will abort the process.
1110 template <typename T>
1111 class BuiltInDefaultValue {
1112  public:
1113  // This function returns true if and only if type T has a built-in default
1114  // value.
1115  static bool Exists() {
1116  return ::std::is_default_constructible<T>::value;
1117  }
1118 
1119  static T Get() {
1120  return BuiltInDefaultValueGetter<
1121  T, ::std::is_default_constructible<T>::value>::Get();
1122  }
1123 };
1124 
1125 // This partial specialization says that we use the same built-in
1126 // default value for T and const T.
1127 template <typename T>
1128 class BuiltInDefaultValue<const T> {
1129  public:
1130  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
1131  static T Get() { return BuiltInDefaultValue<T>::Get(); }
1132 };
1133 
1134 // This partial specialization defines the default values for pointer
1135 // types.
1136 template <typename T>
1137 class BuiltInDefaultValue<T*> {
1138  public:
1139  static bool Exists() { return true; }
1140  static T* Get() { return nullptr; }
1141 };
1142 
1143 // The following specializations define the default values for
1144 // specific types we care about.
1145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
1146  template <> \
1147  class BuiltInDefaultValue<type> { \
1148  public: \
1149  static bool Exists() { return true; } \
1150  static type Get() { return value; } \
1151  }
1152 
1153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
1154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
1155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
1156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
1157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
1158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
1159 
1160 // There's no need for a default action for signed wchar_t, as that
1161 // type is the same as wchar_t for gcc, and invalid for MSVC.
1162 //
1163 // There's also no need for a default action for unsigned wchar_t, as
1164 // that type is the same as unsigned int for gcc, and invalid for
1165 // MSVC.
1166 #if GMOCK_WCHAR_T_IS_NATIVE_
1167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
1168 #endif
1169 
1170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
1171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
1172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
1173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
1174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
1175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
1176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
1177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
1178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
1179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
1180 
1181 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
1182 
1183 // Simple two-arg form of std::disjunction.
1184 template <typename P, typename Q>
1185 using disjunction = typename ::std::conditional<P::value, P, Q>::type;
1186 
1187 } // namespace internal
1188 
1189 // When an unexpected function call is encountered, Google Mock will
1190 // let it return a default value if the user has specified one for its
1191 // return type, or if the return type has a built-in default value;
1192 // otherwise Google Mock won't know what value to return and will have
1193 // to abort the process.
1194 //
1195 // The DefaultValue<T> class allows a user to specify the
1196 // default value for a type T that is both copyable and publicly
1197 // destructible (i.e. anything that can be used as a function return
1198 // type). The usage is:
1199 //
1200 // // Sets the default value for type T to be foo.
1201 // DefaultValue<T>::Set(foo);
1202 template <typename T>
1203 class DefaultValue {
1204  public:
1205  // Sets the default value for type T; requires T to be
1206  // copy-constructable and have a public destructor.
1207  static void Set(T x) {
1208  delete producer_;
1209  producer_ = new FixedValueProducer(x);
1210  }
1211 
1212  // Provides a factory function to be called to generate the default value.
1213  // This method can be used even if T is only move-constructible, but it is not
1214  // limited to that case.
1215  typedef T (*FactoryFunction)();
1216  static void SetFactory(FactoryFunction factory) {
1217  delete producer_;
1218  producer_ = new FactoryValueProducer(factory);
1219  }
1220 
1221  // Unsets the default value for type T.
1222  static void Clear() {
1223  delete producer_;
1224  producer_ = nullptr;
1225  }
1226 
1227  // Returns true if and only if the user has set the default value for type T.
1228  static bool IsSet() { return producer_ != nullptr; }
1229 
1230  // Returns true if T has a default return value set by the user or there
1231  // exists a built-in default value.
1232  static bool Exists() {
1233  return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
1234  }
1235 
1236  // Returns the default value for type T if the user has set one;
1237  // otherwise returns the built-in default value. Requires that Exists()
1238  // is true, which ensures that the return value is well-defined.
1239  static T Get() {
1240  return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
1241  : producer_->Produce();
1242  }
1243 
1244  private:
1245  class ValueProducer {
1246  public:
1247  virtual ~ValueProducer() {}
1248  virtual T Produce() = 0;
1249  };
1250 
1251  class FixedValueProducer : public ValueProducer {
1252  public:
1253  explicit FixedValueProducer(T value) : value_(value) {}
1254  T Produce() override { return value_; }
1255 
1256  private:
1257  const T value_;
1258  GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
1259  };
1260 
1261  class FactoryValueProducer : public ValueProducer {
1262  public:
1263  explicit FactoryValueProducer(FactoryFunction factory)
1264  : factory_(factory) {}
1265  T Produce() override { return factory_(); }
1266 
1267  private:
1268  const FactoryFunction factory_;
1269  GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
1270  };
1271 
1272  static ValueProducer* producer_;
1273 };
1274 
1275 // This partial specialization allows a user to set default values for
1276 // reference types.
1277 template <typename T>
1278 class DefaultValue<T&> {
1279  public:
1280  // Sets the default value for type T&.
1281  static void Set(T& x) { // NOLINT
1282  address_ = &x;
1283  }
1284 
1285  // Unsets the default value for type T&.
1286  static void Clear() { address_ = nullptr; }
1287 
1288  // Returns true if and only if the user has set the default value for type T&.
1289  static bool IsSet() { return address_ != nullptr; }
1290 
1291  // Returns true if T has a default return value set by the user or there
1292  // exists a built-in default value.
1293  static bool Exists() {
1294  return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
1295  }
1296 
1297  // Returns the default value for type T& if the user has set one;
1298  // otherwise returns the built-in default value if there is one;
1299  // otherwise aborts the process.
1300  static T& Get() {
1301  return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
1302  : *address_;
1303  }
1304 
1305  private:
1306  static T* address_;
1307 };
1308 
1309 // This specialization allows DefaultValue<void>::Get() to
1310 // compile.
1311 template <>
1312 class DefaultValue<void> {
1313  public:
1314  static bool Exists() { return true; }
1315  static void Get() {}
1316 };
1317 
1318 // Points to the user-set default value for type T.
1319 template <typename T>
1320 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
1321 
1322 // Points to the user-set default value for type T&.
1323 template <typename T>
1324 T* DefaultValue<T&>::address_ = nullptr;
1325 
1326 // Implement this interface to define an action for function type F.
1327 template <typename F>
1328 class ActionInterface {
1329  public:
1330  typedef typename internal::Function<F>::Result Result;
1331  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1332 
1333  ActionInterface() {}
1334  virtual ~ActionInterface() {}
1335 
1336  // Performs the action. This method is not const, as in general an
1337  // action can have side effects and be stateful. For example, a
1338  // get-the-next-element-from-the-collection action will need to
1339  // remember the current element.
1340  virtual Result Perform(const ArgumentTuple& args) = 0;
1341 
1342  private:
1343  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
1344 };
1345 
1346 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
1347 // object that represents an action to be taken when a mock function
1348 // of type F is called. The implementation of Action<T> is just a
1349 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
1350 // You can view an object implementing ActionInterface<F> as a
1351 // concrete action (including its current state), and an Action<F>
1352 // object as a handle to it.
1353 template <typename F>
1354 class Action {
1355  // Adapter class to allow constructing Action from a legacy ActionInterface.
1356  // New code should create Actions from functors instead.
1357  struct ActionAdapter {
1358  // Adapter must be copyable to satisfy std::function requirements.
1359  ::std::shared_ptr<ActionInterface<F>> impl_;
1360 
1361  template <typename... Args>
1362  typename internal::Function<F>::Result operator()(Args&&... args) {
1363  return impl_->Perform(
1364  ::std::forward_as_tuple(::std::forward<Args>(args)...));
1365  }
1366  };
1367 
1368  template <typename G>
1369  using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
1370 
1371  public:
1372  typedef typename internal::Function<F>::Result Result;
1373  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1374 
1375  // Constructs a null Action. Needed for storing Action objects in
1376  // STL containers.
1377  Action() {}
1378 
1379  // Construct an Action from a specified callable.
1380  // This cannot take std::function directly, because then Action would not be
1381  // directly constructible from lambda (it would require two conversions).
1382  template <
1383  typename G,
1384  typename = typename std::enable_if<internal::disjunction<
1385  IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
1386  G>>::value>::type>
1387  Action(G&& fun) { // NOLINT
1388  Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
1389  }
1390 
1391  // Constructs an Action from its implementation.
1392  explicit Action(ActionInterface<F>* impl)
1393  : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
1394 
1395  // This constructor allows us to turn an Action<Func> object into an
1396  // Action<F>, as long as F's arguments can be implicitly converted
1397  // to Func's and Func's return type can be implicitly converted to F's.
1398  template <typename Func>
1399  explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
1400 
1401  // Returns true if and only if this is the DoDefault() action.
1402  bool IsDoDefault() const { return fun_ == nullptr; }
1403 
1404  // Performs the action. Note that this method is const even though
1405  // the corresponding method in ActionInterface is not. The reason
1406  // is that a const Action<F> means that it cannot be re-bound to
1407  // another concrete action, not that the concrete action it binds to
1408  // cannot change state. (Think of the difference between a const
1409  // pointer and a pointer to const.)
1410  Result Perform(ArgumentTuple args) const {
1411  if (IsDoDefault()) {
1412  internal::IllegalDoDefault(__FILE__, __LINE__);
1413  }
1414  return internal::Apply(fun_, ::std::move(args));
1415  }
1416 
1417  private:
1418  template <typename G>
1419  friend class Action;
1420 
1421  template <typename G>
1422  void Init(G&& g, ::std::true_type) {
1423  fun_ = ::std::forward<G>(g);
1424  }
1425 
1426  template <typename G>
1427  void Init(G&& g, ::std::false_type) {
1428  fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
1429  }
1430 
1431  template <typename FunctionImpl>
1432  struct IgnoreArgs {
1433  template <typename... Args>
1434  Result operator()(const Args&...) const {
1435  return function_impl();
1436  }
1437 
1438  FunctionImpl function_impl;
1439  };
1440 
1441  // fun_ is an empty function if and only if this is the DoDefault() action.
1442  ::std::function<F> fun_;
1443 };
1444 
1445 // The PolymorphicAction class template makes it easy to implement a
1446 // polymorphic action (i.e. an action that can be used in mock
1447 // functions of than one type, e.g. Return()).
1448 //
1449 // To define a polymorphic action, a user first provides a COPYABLE
1450 // implementation class that has a Perform() method template:
1451 //
1452 // class FooAction {
1453 // public:
1454 // template <typename Result, typename ArgumentTuple>
1455 // Result Perform(const ArgumentTuple& args) const {
1456 // // Processes the arguments and returns a result, using
1457 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
1458 // }
1459 // ...
1460 // };
1461 //
1462 // Then the user creates the polymorphic action using
1463 // MakePolymorphicAction(object) where object has type FooAction. See
1464 // the definition of Return(void) and SetArgumentPointee<N>(value) for
1465 // complete examples.
1466 template <typename Impl>
1467 class PolymorphicAction {
1468  public:
1469  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
1470 
1471  template <typename F>
1472  operator Action<F>() const {
1473  return Action<F>(new MonomorphicImpl<F>(impl_));
1474  }
1475 
1476  private:
1477  template <typename F>
1478  class MonomorphicImpl : public ActionInterface<F> {
1479  public:
1480  typedef typename internal::Function<F>::Result Result;
1481  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1482 
1483  explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
1484 
1485  Result Perform(const ArgumentTuple& args) override {
1486  return impl_.template Perform<Result>(args);
1487  }
1488 
1489  private:
1490  Impl impl_;
1491  };
1492 
1493  Impl impl_;
1494 };
1495 
1496 // Creates an Action from its implementation and returns it. The
1497 // created Action object owns the implementation.
1498 template <typename F>
1499 Action<F> MakeAction(ActionInterface<F>* impl) {
1500  return Action<F>(impl);
1501 }
1502 
1503 // Creates a polymorphic action from its implementation. This is
1504 // easier to use than the PolymorphicAction<Impl> constructor as it
1505 // doesn't require you to explicitly write the template argument, e.g.
1506 //
1507 // MakePolymorphicAction(foo);
1508 // vs
1509 // PolymorphicAction<TypeOfFoo>(foo);
1510 template <typename Impl>
1511 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
1512  return PolymorphicAction<Impl>(impl);
1513 }
1514 
1515 namespace internal {
1516 
1517 // Helper struct to specialize ReturnAction to execute a move instead of a copy
1518 // on return. Useful for move-only types, but could be used on any type.
1519 template <typename T>
1520 struct ByMoveWrapper {
1521  explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
1522  T payload;
1523 };
1524 
1525 // Implements the polymorphic Return(x) action, which can be used in
1526 // any function that returns the type of x, regardless of the argument
1527 // types.
1528 //
1529 // Note: The value passed into Return must be converted into
1530 // Function<F>::Result when this action is cast to Action<F> rather than
1531 // when that action is performed. This is important in scenarios like
1532 //
1533 // MOCK_METHOD1(Method, T(U));
1534 // ...
1535 // {
1536 // Foo foo;
1537 // X x(&foo);
1538 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
1539 // }
1540 //
1541 // In the example above the variable x holds reference to foo which leaves
1542 // scope and gets destroyed. If copying X just copies a reference to foo,
1543 // that copy will be left with a hanging reference. If conversion to T
1544 // makes a copy of foo, the above code is safe. To support that scenario, we
1545 // need to make sure that the type conversion happens inside the EXPECT_CALL
1546 // statement, and conversion of the result of Return to Action<T(U)> is a
1547 // good place for that.
1548 //
1549 // The real life example of the above scenario happens when an invocation
1550 // of gtl::Container() is passed into Return.
1551 //
1552 template <typename R>
1553 class ReturnAction {
1554  public:
1555  // Constructs a ReturnAction object from the value to be returned.
1556  // 'value' is passed by value instead of by const reference in order
1557  // to allow Return("string literal") to compile.
1558  explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
1559 
1560  // This template type conversion operator allows Return(x) to be
1561  // used in ANY function that returns x's type.
1562  template <typename F>
1563  operator Action<F>() const { // NOLINT
1564  // Assert statement belongs here because this is the best place to verify
1565  // conditions on F. It produces the clearest error messages
1566  // in most compilers.
1567  // Impl really belongs in this scope as a local class but can't
1568  // because MSVC produces duplicate symbols in different translation units
1569  // in this case. Until MS fixes that bug we put Impl into the class scope
1570  // and put the typedef both here (for use in assert statement) and
1571  // in the Impl class. But both definitions must be the same.
1572  typedef typename Function<F>::Result Result;
1573  GTEST_COMPILE_ASSERT_(
1574  !std::is_reference<Result>::value,
1575  use_ReturnRef_instead_of_Return_to_return_a_reference);
1576  static_assert(!std::is_void<Result>::value,
1577  "Can't use Return() on an action expected to return `void`.");
1578  return Action<F>(new Impl<R, F>(value_));
1579  }
1580 
1581  private:
1582  // Implements the Return(x) action for a particular function type F.
1583  template <typename R_, typename F>
1584  class Impl : public ActionInterface<F> {
1585  public:
1586  typedef typename Function<F>::Result Result;
1587  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1588 
1589  // The implicit cast is necessary when Result has more than one
1590  // single-argument constructor (e.g. Result is std::vector<int>) and R
1591  // has a type conversion operator template. In that case, value_(value)
1592  // won't compile as the compiler doesn't known which constructor of
1593  // Result to call. ImplicitCast_ forces the compiler to convert R to
1594  // Result without considering explicit constructors, thus resolving the
1595  // ambiguity. value_ is then initialized using its copy constructor.
1596  explicit Impl(const std::shared_ptr<R>& value)
1597  : value_before_cast_(*value),
1598  value_(ImplicitCast_<Result>(value_before_cast_)) {}
1599 
1600  Result Perform(const ArgumentTuple&) override { return value_; }
1601 
1602  private:
1603  GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
1604  Result_cannot_be_a_reference_type);
1605  // We save the value before casting just in case it is being cast to a
1606  // wrapper type.
1607  R value_before_cast_;
1608  Result value_;
1609 
1610  GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
1611  };
1612 
1613  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
1614  // move its contents instead.
1615  template <typename R_, typename F>
1616  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
1617  public:
1618  typedef typename Function<F>::Result Result;
1619  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1620 
1621  explicit Impl(const std::shared_ptr<R>& wrapper)
1622  : performed_(false), wrapper_(wrapper) {}
1623 
1624  Result Perform(const ArgumentTuple&) override {
1625  GTEST_CHECK_(!performed_)
1626  << "A ByMove() action should only be performed once.";
1627  performed_ = true;
1628  return std::move(wrapper_->payload);
1629  }
1630 
1631  private:
1632  bool performed_;
1633  const std::shared_ptr<R> wrapper_;
1634  };
1635 
1636  const std::shared_ptr<R> value_;
1637 };
1638 
1639 // Implements the ReturnNull() action.
1640 class ReturnNullAction {
1641  public:
1642  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1643  // this is enforced by returning nullptr, and in non-C++11 by asserting a
1644  // pointer type on compile time.
1645  template <typename Result, typename ArgumentTuple>
1646  static Result Perform(const ArgumentTuple&) {
1647  return nullptr;
1648  }
1649 };
1650 
1651 // Implements the Return() action.
1652 class ReturnVoidAction {
1653  public:
1654  // Allows Return() to be used in any void-returning function.
1655  template <typename Result, typename ArgumentTuple>
1656  static void Perform(const ArgumentTuple&) {
1657  static_assert(std::is_void<Result>::value, "Result should be void.");
1658  }
1659 };
1660 
1661 // Implements the polymorphic ReturnRef(x) action, which can be used
1662 // in any function that returns a reference to the type of x,
1663 // regardless of the argument types.
1664 template <typename T>
1665 class ReturnRefAction {
1666  public:
1667  // Constructs a ReturnRefAction object from the reference to be returned.
1668  explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
1669 
1670  // This template type conversion operator allows ReturnRef(x) to be
1671  // used in ANY function that returns a reference to x's type.
1672  template <typename F>
1673  operator Action<F>() const {
1674  typedef typename Function<F>::Result Result;
1675  // Asserts that the function return type is a reference. This
1676  // catches the user error of using ReturnRef(x) when Return(x)
1677  // should be used, and generates some helpful error message.
1678  GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
1679  use_Return_instead_of_ReturnRef_to_return_a_value);
1680  return Action<F>(new Impl<F>(ref_));
1681  }
1682 
1683  private:
1684  // Implements the ReturnRef(x) action for a particular function type F.
1685  template <typename F>
1686  class Impl : public ActionInterface<F> {
1687  public:
1688  typedef typename Function<F>::Result Result;
1689  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1690 
1691  explicit Impl(T& ref) : ref_(ref) {} // NOLINT
1692 
1693  Result Perform(const ArgumentTuple&) override { return ref_; }
1694 
1695  private:
1696  T& ref_;
1697  };
1698 
1699  T& ref_;
1700 };
1701 
1702 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1703 // used in any function that returns a reference to the type of x,
1704 // regardless of the argument types.
1705 template <typename T>
1706 class ReturnRefOfCopyAction {
1707  public:
1708  // Constructs a ReturnRefOfCopyAction object from the reference to
1709  // be returned.
1710  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
1711 
1712  // This template type conversion operator allows ReturnRefOfCopy(x) to be
1713  // used in ANY function that returns a reference to x's type.
1714  template <typename F>
1715  operator Action<F>() const {
1716  typedef typename Function<F>::Result Result;
1717  // Asserts that the function return type is a reference. This
1718  // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1719  // should be used, and generates some helpful error message.
1720  GTEST_COMPILE_ASSERT_(
1721  std::is_reference<Result>::value,
1722  use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
1723  return Action<F>(new Impl<F>(value_));
1724  }
1725 
1726  private:
1727  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1728  template <typename F>
1729  class Impl : public ActionInterface<F> {
1730  public:
1731  typedef typename Function<F>::Result Result;
1732  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1733 
1734  explicit Impl(const T& value) : value_(value) {} // NOLINT
1735 
1736  Result Perform(const ArgumentTuple&) override { return value_; }
1737 
1738  private:
1739  T value_;
1740  };
1741 
1742  const T value_;
1743 };
1744 
1745 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1746 // used in any function that returns the element_type of v.
1747 template <typename T>
1748 class ReturnRoundRobinAction {
1749  public:
1750  explicit ReturnRoundRobinAction(std::vector<T> values) {
1751  GTEST_CHECK_(!values.empty())
1752  << "ReturnRoundRobin requires at least one element.";
1753  state_->values = std::move(values);
1754  }
1755 
1756  template <typename... Args>
1757  T operator()(Args&&...) const {
1758  return state_->Next();
1759  }
1760 
1761  private:
1762  struct State {
1763  T Next() {
1764  T ret_val = values[i++];
1765  if (i == values.size()) i = 0;
1766  return ret_val;
1767  }
1768 
1769  std::vector<T> values;
1770  size_t i = 0;
1771  };
1772  std::shared_ptr<State> state_ = std::make_shared<State>();
1773 };
1774 
1775 // Implements the polymorphic DoDefault() action.
1776 class DoDefaultAction {
1777  public:
1778  // This template type conversion operator allows DoDefault() to be
1779  // used in any function.
1780  template <typename F>
1781  operator Action<F>() const { return Action<F>(); } // NOLINT
1782 };
1783 
1784 // Implements the Assign action to set a given pointer referent to a
1785 // particular value.
1786 template <typename T1, typename T2>
1787 class AssignAction {
1788  public:
1789  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1790 
1791  template <typename Result, typename ArgumentTuple>
1792  void Perform(const ArgumentTuple& /* args */) const {
1793  *ptr_ = value_;
1794  }
1795 
1796  private:
1797  T1* const ptr_;
1798  const T2 value_;
1799 };
1800 
1801 #if !GTEST_OS_WINDOWS_MOBILE
1802 
1803 // Implements the SetErrnoAndReturn action to simulate return from
1804 // various system calls and libc functions.
1805 template <typename T>
1806 class SetErrnoAndReturnAction {
1807  public:
1808  SetErrnoAndReturnAction(int errno_value, T result)
1809  : errno_(errno_value),
1810  result_(result) {}
1811  template <typename Result, typename ArgumentTuple>
1812  Result Perform(const ArgumentTuple& /* args */) const {
1813  errno = errno_;
1814  return result_;
1815  }
1816 
1817  private:
1818  const int errno_;
1819  const T result_;
1820 };
1821 
1822 #endif // !GTEST_OS_WINDOWS_MOBILE
1823 
1824 // Implements the SetArgumentPointee<N>(x) action for any function
1825 // whose N-th argument (0-based) is a pointer to x's type.
1826 template <size_t N, typename A, typename = void>
1827 struct SetArgumentPointeeAction {
1828  A value;
1829 
1830  template <typename... Args>
1831  void operator()(const Args&... args) const {
1832  *::std::get<N>(std::tie(args...)) = value;
1833  }
1834 };
1835 
1836 // Implements the Invoke(object_ptr, &Class::Method) action.
1837 template <class Class, typename MethodPtr>
1838 struct InvokeMethodAction {
1839  Class* const obj_ptr;
1840  const MethodPtr method_ptr;
1841 
1842  template <typename... Args>
1843  auto operator()(Args&&... args) const
1844  -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1845  return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1846  }
1847 };
1848 
1849 // Implements the InvokeWithoutArgs(f) action. The template argument
1850 // FunctionImpl is the implementation type of f, which can be either a
1851 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
1852 // Action<F> as long as f's type is compatible with F.
1853 template <typename FunctionImpl>
1854 struct InvokeWithoutArgsAction {
1855  FunctionImpl function_impl;
1856 
1857  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1858  // compatible with f.
1859  template <typename... Args>
1860  auto operator()(const Args&...) -> decltype(function_impl()) {
1861  return function_impl();
1862  }
1863 };
1864 
1865 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1866 template <class Class, typename MethodPtr>
1867 struct InvokeMethodWithoutArgsAction {
1868  Class* const obj_ptr;
1869  const MethodPtr method_ptr;
1870 
1871  using ReturnType =
1872  decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1873 
1874  template <typename... Args>
1875  ReturnType operator()(const Args&...) const {
1876  return (obj_ptr->*method_ptr)();
1877  }
1878 };
1879 
1880 // Implements the IgnoreResult(action) action.
1881 template <typename A>
1882 class IgnoreResultAction {
1883  public:
1884  explicit IgnoreResultAction(const A& action) : action_(action) {}
1885 
1886  template <typename F>
1887  operator Action<F>() const {
1888  // Assert statement belongs here because this is the best place to verify
1889  // conditions on F. It produces the clearest error messages
1890  // in most compilers.
1891  // Impl really belongs in this scope as a local class but can't
1892  // because MSVC produces duplicate symbols in different translation units
1893  // in this case. Until MS fixes that bug we put Impl into the class scope
1894  // and put the typedef both here (for use in assert statement) and
1895  // in the Impl class. But both definitions must be the same.
1896  typedef typename internal::Function<F>::Result Result;
1897 
1898  // Asserts at compile time that F returns void.
1899  static_assert(std::is_void<Result>::value, "Result type should be void.");
1900 
1901  return Action<F>(new Impl<F>(action_));
1902  }
1903 
1904  private:
1905  template <typename F>
1906  class Impl : public ActionInterface<F> {
1907  public:
1908  typedef typename internal::Function<F>::Result Result;
1909  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1910 
1911  explicit Impl(const A& action) : action_(action) {}
1912 
1913  void Perform(const ArgumentTuple& args) override {
1914  // Performs the action and ignores its result.
1915  action_.Perform(args);
1916  }
1917 
1918  private:
1919  // Type OriginalFunction is the same as F except that its return
1920  // type is IgnoredValue.
1921  typedef typename internal::Function<F>::MakeResultIgnoredValue
1922  OriginalFunction;
1923 
1924  const Action<OriginalFunction> action_;
1925  };
1926 
1927  const A action_;
1928 };
1929 
1930 template <typename InnerAction, size_t... I>
1931 struct WithArgsAction {
1932  InnerAction action;
1933 
1934  // The inner action could be anything convertible to Action<X>.
1935  // We use the conversion operator to detect the signature of the inner Action.
1936  template <typename R, typename... Args>
1937  operator Action<R(Args...)>() const { // NOLINT
1938  using TupleType = std::tuple<Args...>;
1939  Action<R(typename std::tuple_element<I, TupleType>::type...)>
1940  converted(action);
1941 
1942  return [converted](Args... args) -> R {
1943  return converted.Perform(std::forward_as_tuple(
1944  std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1945  };
1946  }
1947 };
1948 
1949 template <typename... Actions>
1950 struct DoAllAction {
1951  private:
1952  template <typename T>
1953  using NonFinalType =
1954  typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1955 
1956  template <typename ActionT, size_t... I>
1957  std::vector<ActionT> Convert(IndexSequence<I...>) const {
1958  return {ActionT(std::get<I>(actions))...};
1959  }
1960 
1961  public:
1962  std::tuple<Actions...> actions;
1963 
1964  template <typename R, typename... Args>
1965  operator Action<R(Args...)>() const { // NOLINT
1966  struct Op {
1967  std::vector<Action<void(NonFinalType<Args>...)>> converted;
1968  Action<R(Args...)> last;
1969  R operator()(Args... args) const {
1970  auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
1971  for (auto& a : converted) {
1972  a.Perform(tuple_args);
1973  }
1974  return last.Perform(std::move(tuple_args));
1975  }
1976  };
1977  return Op{Convert<Action<void(NonFinalType<Args>...)>>(
1978  MakeIndexSequence<sizeof...(Actions) - 1>()),
1979  std::get<sizeof...(Actions) - 1>(actions)};
1980  }
1981 };
1982 
1983 template <typename T, typename... Params>
1984 struct ReturnNewAction {
1985  T* operator()() const {
1986  return internal::Apply(
1987  [](const Params&... unpacked_params) {
1988  return new T(unpacked_params...);
1989  },
1990  params);
1991  }
1992  std::tuple<Params...> params;
1993 };
1994 
1995 template <size_t k>
1996 struct ReturnArgAction {
1997  template <typename... Args>
1998  auto operator()(const Args&... args) const ->
1999  typename std::tuple_element<k, std::tuple<Args...>>::type {
2000  return std::get<k>(std::tie(args...));
2001  }
2002 };
2003 
2004 template <size_t k, typename Ptr>
2005 struct SaveArgAction {
2006  Ptr pointer;
2007 
2008  template <typename... Args>
2009  void operator()(const Args&... args) const {
2010  *pointer = std::get<k>(std::tie(args...));
2011  }
2012 };
2013 
2014 template <size_t k, typename Ptr>
2015 struct SaveArgPointeeAction {
2016  Ptr pointer;
2017 
2018  template <typename... Args>
2019  void operator()(const Args&... args) const {
2020  *pointer = *std::get<k>(std::tie(args...));
2021  }
2022 };
2023 
2024 template <size_t k, typename T>
2025 struct SetArgRefereeAction {
2026  T value;
2027 
2028  template <typename... Args>
2029  void operator()(Args&&... args) const {
2030  using argk_type =
2031  typename ::std::tuple_element<k, std::tuple<Args...>>::type;
2032  static_assert(std::is_lvalue_reference<argk_type>::value,
2033  "Argument must be a reference type.");
2034  std::get<k>(std::tie(args...)) = value;
2035  }
2036 };
2037 
2038 template <size_t k, typename I1, typename I2>
2039 struct SetArrayArgumentAction {
2040  I1 first;
2041  I2 last;
2042 
2043  template <typename... Args>
2044  void operator()(const Args&... args) const {
2045  auto value = std::get<k>(std::tie(args...));
2046  for (auto it = first; it != last; ++it, (void)++value) {
2047  *value = *it;
2048  }
2049  }
2050 };
2051 
2052 template <size_t k>
2053 struct DeleteArgAction {
2054  template <typename... Args>
2055  void operator()(const Args&... args) const {
2056  delete std::get<k>(std::tie(args...));
2057  }
2058 };
2059 
2060 template <typename Ptr>
2061 struct ReturnPointeeAction {
2062  Ptr pointer;
2063  template <typename... Args>
2064  auto operator()(const Args&...) const -> decltype(*pointer) {
2065  return *pointer;
2066  }
2067 };
2068 
2069 #if GTEST_HAS_EXCEPTIONS
2070 template <typename T>
2071 struct ThrowAction {
2072  T exception;
2073  // We use a conversion operator to adapt to any return type.
2074  template <typename R, typename... Args>
2075  operator Action<R(Args...)>() const { // NOLINT
2076  T copy = exception;
2077  return [copy](Args...) -> R { throw copy; };
2078  }
2079 };
2080 #endif // GTEST_HAS_EXCEPTIONS
2081 
2082 } // namespace internal
2083 
2084 // An Unused object can be implicitly constructed from ANY value.
2085 // This is handy when defining actions that ignore some or all of the
2086 // mock function arguments. For example, given
2087 //
2088 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
2089 // MOCK_METHOD3(Bar, double(int index, double x, double y));
2090 //
2091 // instead of
2092 //
2093 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
2094 // return sqrt(x*x + y*y);
2095 // }
2096 // double DistanceToOriginWithIndex(int index, double x, double y) {
2097 // return sqrt(x*x + y*y);
2098 // }
2099 // ...
2100 // EXPECT_CALL(mock, Foo("abc", _, _))
2101 // .WillOnce(Invoke(DistanceToOriginWithLabel));
2102 // EXPECT_CALL(mock, Bar(5, _, _))
2103 // .WillOnce(Invoke(DistanceToOriginWithIndex));
2104 //
2105 // you could write
2106 //
2107 // // We can declare any uninteresting argument as Unused.
2108 // double DistanceToOrigin(Unused, double x, double y) {
2109 // return sqrt(x*x + y*y);
2110 // }
2111 // ...
2112 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
2113 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
2114 typedef internal::IgnoredValue Unused;
2115 
2116 // Creates an action that does actions a1, a2, ..., sequentially in
2117 // each invocation. All but the last action will have a readonly view of the
2118 // arguments.
2119 template <typename... Action>
2120 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
2121  Action&&... action) {
2122  return {std::forward_as_tuple(std::forward<Action>(action)...)};
2123 }
2124 
2125 // WithArg<k>(an_action) creates an action that passes the k-th
2126 // (0-based) argument of the mock function to an_action and performs
2127 // it. It adapts an action accepting one argument to one that accepts
2128 // multiple arguments. For convenience, we also provide
2129 // WithArgs<k>(an_action) (defined below) as a synonym.
2130 template <size_t k, typename InnerAction>
2131 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
2132 WithArg(InnerAction&& action) {
2133  return {std::forward<InnerAction>(action)};
2134 }
2135 
2136 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
2137 // the selected arguments of the mock function to an_action and
2138 // performs it. It serves as an adaptor between actions with
2139 // different argument lists.
2140 template <size_t k, size_t... ks, typename InnerAction>
2141 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
2142 WithArgs(InnerAction&& action) {
2143  return {std::forward<InnerAction>(action)};
2144 }
2145 
2146 // WithoutArgs(inner_action) can be used in a mock function with a
2147 // non-empty argument list to perform inner_action, which takes no
2148 // argument. In other words, it adapts an action accepting no
2149 // argument to one that accepts (and ignores) arguments.
2150 template <typename InnerAction>
2151 internal::WithArgsAction<typename std::decay<InnerAction>::type>
2152 WithoutArgs(InnerAction&& action) {
2153  return {std::forward<InnerAction>(action)};
2154 }
2155 
2156 // Creates an action that returns 'value'. 'value' is passed by value
2157 // instead of const reference - otherwise Return("string literal")
2158 // will trigger a compiler error about using array as initializer.
2159 template <typename R>
2160 internal::ReturnAction<R> Return(R value) {
2161  return internal::ReturnAction<R>(std::move(value));
2162 }
2163 
2164 // Creates an action that returns NULL.
2165 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
2166  return MakePolymorphicAction(internal::ReturnNullAction());
2167 }
2168 
2169 // Creates an action that returns from a void function.
2170 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
2171  return MakePolymorphicAction(internal::ReturnVoidAction());
2172 }
2173 
2174 // Creates an action that returns the reference to a variable.
2175 template <typename R>
2176 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
2177  return internal::ReturnRefAction<R>(x);
2178 }
2179 
2180 // Prevent using ReturnRef on reference to temporary.
2181 template <typename R, R* = nullptr>
2182 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
2183 
2184 // Creates an action that returns the reference to a copy of the
2185 // argument. The copy is created when the action is constructed and
2186 // lives as long as the action.
2187 template <typename R>
2188 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
2189  return internal::ReturnRefOfCopyAction<R>(x);
2190 }
2191 
2192 // Modifies the parent action (a Return() action) to perform a move of the
2193 // argument instead of a copy.
2194 // Return(ByMove()) actions can only be executed once and will assert this
2195 // invariant.
2196 template <typename R>
2197 internal::ByMoveWrapper<R> ByMove(R x) {
2198  return internal::ByMoveWrapper<R>(std::move(x));
2199 }
2200 
2201 // Creates an action that returns an element of `vals`. Calling this action will
2202 // repeatedly return the next value from `vals` until it reaches the end and
2203 // will restart from the beginning.
2204 template <typename T>
2205 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
2206  return internal::ReturnRoundRobinAction<T>(std::move(vals));
2207 }
2208 
2209 // Creates an action that returns an element of `vals`. Calling this action will
2210 // repeatedly return the next value from `vals` until it reaches the end and
2211 // will restart from the beginning.
2212 template <typename T>
2213 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
2214  std::initializer_list<T> vals) {
2215  return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
2216 }
2217 
2218 // Creates an action that does the default action for the give mock function.
2219 inline internal::DoDefaultAction DoDefault() {
2220  return internal::DoDefaultAction();
2221 }
2222 
2223 // Creates an action that sets the variable pointed by the N-th
2224 // (0-based) function argument to 'value'.
2225 template <size_t N, typename T>
2226 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
2227  return {std::move(value)};
2228 }
2229 
2230 // The following version is DEPRECATED.
2231 template <size_t N, typename T>
2232 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
2233  return {std::move(value)};
2234 }
2235 
2236 // Creates an action that sets a pointer referent to a given value.
2237 template <typename T1, typename T2>
2238 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
2239  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
2240 }
2241 
2242 #if !GTEST_OS_WINDOWS_MOBILE
2243 
2244 // Creates an action that sets errno and returns the appropriate error.
2245 template <typename T>
2246 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
2247 SetErrnoAndReturn(int errval, T result) {
2248  return MakePolymorphicAction(
2249  internal::SetErrnoAndReturnAction<T>(errval, result));
2250 }
2251 
2252 #endif // !GTEST_OS_WINDOWS_MOBILE
2253 
2254 // Various overloads for Invoke().
2255 
2256 // Legacy function.
2257 // Actions can now be implicitly constructed from callables. No need to create
2258 // wrapper objects.
2259 // This function exists for backwards compatibility.
2260 template <typename FunctionImpl>
2261 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
2262  return std::forward<FunctionImpl>(function_impl);
2263 }
2264 
2265 // Creates an action that invokes the given method on the given object
2266 // with the mock function's arguments.
2267 template <class Class, typename MethodPtr>
2268 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
2269  MethodPtr method_ptr) {
2270  return {obj_ptr, method_ptr};
2271 }
2272 
2273 // Creates an action that invokes 'function_impl' with no argument.
2274 template <typename FunctionImpl>
2275 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
2276 InvokeWithoutArgs(FunctionImpl function_impl) {
2277  return {std::move(function_impl)};
2278 }
2279 
2280 // Creates an action that invokes the given method on the given object
2281 // with no argument.
2282 template <class Class, typename MethodPtr>
2283 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
2284  Class* obj_ptr, MethodPtr method_ptr) {
2285  return {obj_ptr, method_ptr};
2286 }
2287 
2288 // Creates an action that performs an_action and throws away its
2289 // result. In other words, it changes the return type of an_action to
2290 // void. an_action MUST NOT return void, or the code won't compile.
2291 template <typename A>
2292 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
2293  return internal::IgnoreResultAction<A>(an_action);
2294 }
2295 
2296 // Creates a reference wrapper for the given L-value. If necessary,
2297 // you can explicitly specify the type of the reference. For example,
2298 // suppose 'derived' is an object of type Derived, ByRef(derived)
2299 // would wrap a Derived&. If you want to wrap a const Base& instead,
2300 // where Base is a base class of Derived, just write:
2301 //
2302 // ByRef<const Base>(derived)
2303 //
2304 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
2305 // However, it may still be used for consistency with ByMove().
2306 template <typename T>
2307 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
2308  return ::std::reference_wrapper<T>(l_value);
2309 }
2310 
2311 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2312 // instance of type T, constructed on the heap with constructor arguments
2313 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2314 template <typename T, typename... Params>
2315 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2316  Params&&... params) {
2317  return {std::forward_as_tuple(std::forward<Params>(params)...)};
2318 }
2319 
2320 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2321 template <size_t k>
2322 internal::ReturnArgAction<k> ReturnArg() {
2323  return {};
2324 }
2325 
2326 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2327 // mock function to *pointer.
2328 template <size_t k, typename Ptr>
2329 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2330  return {pointer};
2331 }
2332 
2333 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2334 // by the k-th (0-based) argument of the mock function to *pointer.
2335 template <size_t k, typename Ptr>
2336 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2337  return {pointer};
2338 }
2339 
2340 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2341 // referenced by the k-th (0-based) argument of the mock function.
2342 template <size_t k, typename T>
2343 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2344  T&& value) {
2345  return {std::forward<T>(value)};
2346 }
2347 
2348 // Action SetArrayArgument<k>(first, last) copies the elements in
2349 // source range [first, last) to the array pointed to by the k-th
2350 // (0-based) argument, which can be either a pointer or an
2351 // iterator. The action does not take ownership of the elements in the
2352 // source range.
2353 template <size_t k, typename I1, typename I2>
2354 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2355  I2 last) {
2356  return {first, last};
2357 }
2358 
2359 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2360 // function.
2361 template <size_t k>
2362 internal::DeleteArgAction<k> DeleteArg() {
2363  return {};
2364 }
2365 
2366 // This action returns the value pointed to by 'pointer'.
2367 template <typename Ptr>
2368 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2369  return {pointer};
2370 }
2371 
2372 // Action Throw(exception) can be used in a mock function of any type
2373 // to throw the given exception. Any copyable value can be thrown.
2374 #if GTEST_HAS_EXCEPTIONS
2375 template <typename T>
2376 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2377  return {std::forward<T>(exception)};
2378 }
2379 #endif // GTEST_HAS_EXCEPTIONS
2380 
2381 namespace internal {
2382 
2383 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2384 // defines an action that can be used in a mock function. Typically,
2385 // these actions only care about a subset of the arguments of the mock
2386 // function. For example, if such an action only uses the second
2387 // argument, it can be used in any mock function that takes >= 2
2388 // arguments where the type of the second argument is compatible.
2389 //
2390 // Therefore, the action implementation must be prepared to take more
2391 // arguments than it needs. The ExcessiveArg type is used to
2392 // represent those excessive arguments. In order to keep the compiler
2393 // error messages tractable, we define it in the testing namespace
2394 // instead of testing::internal. However, this is an INTERNAL TYPE
2395 // and subject to change without notice, so a user MUST NOT USE THIS
2396 // TYPE DIRECTLY.
2397 struct ExcessiveArg {};
2398 
2399 // Builds an implementation of an Action<> for some particular signature, using
2400 // a class defined by an ACTION* macro.
2401 template <typename F, typename Impl> struct ActionImpl;
2402 
2403 template <typename Impl>
2404 struct ImplBase {
2405  struct Holder {
2406  // Allows each copy of the Action<> to get to the Impl.
2407  explicit operator const Impl&() const { return *ptr; }
2408  std::shared_ptr<Impl> ptr;
2409  };
2410  using type = typename std::conditional<std::is_constructible<Impl>::value,
2411  Impl, Holder>::type;
2412 };
2413 
2414 template <typename R, typename... Args, typename Impl>
2415 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2416  using Base = typename ImplBase<Impl>::type;
2417  using function_type = R(Args...);
2418  using args_type = std::tuple<Args...>;
2419 
2420  ActionImpl() = default; // Only defined if appropriate for Base.
2421  explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
2422 
2423  R operator()(Args&&... arg) const {
2424  static constexpr size_t kMaxArgs =
2425  sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2426  return Apply(MakeIndexSequence<kMaxArgs>{},
2427  MakeIndexSequence<10 - kMaxArgs>{},
2428  args_type{std::forward<Args>(arg)...});
2429  }
2430 
2431  template <std::size_t... arg_id, std::size_t... excess_id>
2432  R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2433  const args_type& args) const {
2434  // Impl need not be specific to the signature of action being implemented;
2435  // only the implementing function body needs to have all of the specific
2436  // types instantiated. Up to 10 of the args that are provided by the
2437  // args_type get passed, followed by a dummy of unspecified type for the
2438  // remainder up to 10 explicit args.
2439  static constexpr ExcessiveArg kExcessArg{};
2440  return static_cast<const Impl&>(*this).template gmock_PerformImpl<
2441  /*function_type=*/function_type, /*return_type=*/R,
2442  /*args_type=*/args_type,
2443  /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
2444  /*args=*/args, std::get<arg_id>(args)...,
2445  ((void)excess_id, kExcessArg)...);
2446  }
2447 };
2448 
2449 // Stores a default-constructed Impl as part of the Action<>'s
2450 // std::function<>. The Impl should be trivial to copy.
2451 template <typename F, typename Impl>
2452 ::testing::Action<F> MakeAction() {
2453  return ::testing::Action<F>(ActionImpl<F, Impl>());
2454 }
2455 
2456 // Stores just the one given instance of Impl.
2457 template <typename F, typename Impl>
2458 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2459  return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2460 }
2461 
2462 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2463  , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2464 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
2465  const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2466  GMOCK_INTERNAL_ARG_UNUSED, , 10)
2467 
2468 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2469 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2470  const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2471 
2472 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2473 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2474  GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2475 
2476 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2477 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2478  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2479 
2480 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2481 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2482  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2483 
2484 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2485  , param##_type gmock_p##i
2486 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2487  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2488 
2489 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2490  , std::forward<param##_type>(gmock_p##i)
2491 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2492  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2493 
2494 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2495  , param(::std::forward<param##_type>(gmock_p##i))
2496 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2497  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2498 
2499 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2500 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2501  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2502 
2503 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \
2504  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2505  class full_name { \
2506  public: \
2507  explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2508  : impl_(std::make_shared<gmock_Impl>( \
2509  GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
2510  full_name(const full_name&) = default; \
2511  full_name(full_name&&) noexcept = default; \
2512  template <typename F> \
2513  operator ::testing::Action<F>() const { \
2514  return ::testing::internal::MakeAction<F>(impl_); \
2515  } \
2516  private: \
2517  class gmock_Impl { \
2518  public: \
2519  explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2520  : GMOCK_ACTION_INIT_PARAMS_(params) {} \
2521  template <typename function_type, typename return_type, \
2522  typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2523  return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2524  GMOCK_ACTION_FIELD_PARAMS_(params) \
2525  }; \
2526  std::shared_ptr<const gmock_Impl> impl_; \
2527  }; \
2528  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2529  inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2530  GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
2531  return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
2532  GMOCK_ACTION_GVALUE_PARAMS_(params)); \
2533  } \
2534  template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2535  template <typename function_type, typename return_type, typename args_type, \
2536  GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2537  return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
2538  gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2539 
2540 } // namespace internal
2541 
2542 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2543 #define ACTION(name) \
2544  class name##Action { \
2545  public: \
2546  explicit name##Action() noexcept {} \
2547  name##Action(const name##Action&) noexcept {} \
2548  template <typename F> \
2549  operator ::testing::Action<F>() const { \
2550  return ::testing::internal::MakeAction<F, gmock_Impl>(); \
2551  } \
2552  private: \
2553  class gmock_Impl { \
2554  public: \
2555  template <typename function_type, typename return_type, \
2556  typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2557  return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2558  }; \
2559  }; \
2560  inline name##Action name() GTEST_MUST_USE_RESULT_; \
2561  inline name##Action name() { return name##Action(); } \
2562  template <typename function_type, typename return_type, typename args_type, \
2563  GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2564  return_type name##Action::gmock_Impl::gmock_PerformImpl( \
2565  GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2566 
2567 #define ACTION_P(name, ...) \
2568  GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2569 
2570 #define ACTION_P2(name, ...) \
2571  GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2572 
2573 #define ACTION_P3(name, ...) \
2574  GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2575 
2576 #define ACTION_P4(name, ...) \
2577  GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2578 
2579 #define ACTION_P5(name, ...) \
2580  GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2581 
2582 #define ACTION_P6(name, ...) \
2583  GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2584 
2585 #define ACTION_P7(name, ...) \
2586  GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2587 
2588 #define ACTION_P8(name, ...) \
2589  GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2590 
2591 #define ACTION_P9(name, ...) \
2592  GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2593 
2594 #define ACTION_P10(name, ...) \
2595  GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2596 
2597 } // namespace testing
2598 
2599 #ifdef _MSC_VER
2600 # pragma warning(pop)
2601 #endif
2602 
2603 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2604 // Copyright 2007, Google Inc.
2605 // All rights reserved.
2606 //
2607 // Redistribution and use in source and binary forms, with or without
2608 // modification, are permitted provided that the following conditions are
2609 // met:
2610 //
2611 // * Redistributions of source code must retain the above copyright
2612 // notice, this list of conditions and the following disclaimer.
2613 // * Redistributions in binary form must reproduce the above
2614 // copyright notice, this list of conditions and the following disclaimer
2615 // in the documentation and/or other materials provided with the
2616 // distribution.
2617 // * Neither the name of Google Inc. nor the names of its
2618 // contributors may be used to endorse or promote products derived from
2619 // this software without specific prior written permission.
2620 //
2621 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2622 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2623 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2624 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2625 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2626 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2627 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2628 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2629 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2630 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2631 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2632 
2633 
2634 // Google Mock - a framework for writing C++ mock classes.
2635 //
2636 // This file implements some commonly used cardinalities. More
2637 // cardinalities can be defined by the user implementing the
2638 // CardinalityInterface interface if necessary.
2639 
2640 // GOOGLETEST_CM0002 DO NOT DELETE
2641 
2642 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2643 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2644 
2645 #include <limits.h>
2646 #include <memory>
2647 #include <ostream> // NOLINT
2648 
2649 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
2650 /* class A needs to have dll-interface to be used by clients of class B */)
2651 
2652 namespace testing {
2653 
2654 // To implement a cardinality Foo, define:
2655 // 1. a class FooCardinality that implements the
2656 // CardinalityInterface interface, and
2657 // 2. a factory function that creates a Cardinality object from a
2658 // const FooCardinality*.
2659 //
2660 // The two-level delegation design follows that of Matcher, providing
2661 // consistency for extension developers. It also eases ownership
2662 // management as Cardinality objects can now be copied like plain values.
2663 
2664 // The implementation of a cardinality.
2665 class CardinalityInterface {
2666  public:
2667  virtual ~CardinalityInterface() {}
2668 
2669  // Conservative estimate on the lower/upper bound of the number of
2670  // calls allowed.
2671  virtual int ConservativeLowerBound() const { return 0; }
2672  virtual int ConservativeUpperBound() const { return INT_MAX; }
2673 
2674  // Returns true if and only if call_count calls will satisfy this
2675  // cardinality.
2676  virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
2677 
2678  // Returns true if and only if call_count calls will saturate this
2679  // cardinality.
2680  virtual bool IsSaturatedByCallCount(int call_count) const = 0;
2681 
2682  // Describes self to an ostream.
2683  virtual void DescribeTo(::std::ostream* os) const = 0;
2684 };
2685 
2686 // A Cardinality is a copyable and IMMUTABLE (except by assignment)
2687 // object that specifies how many times a mock function is expected to
2688 // be called. The implementation of Cardinality is just a std::shared_ptr
2689 // to const CardinalityInterface. Don't inherit from Cardinality!
2690 class GTEST_API_ Cardinality {
2691  public:
2692  // Constructs a null cardinality. Needed for storing Cardinality
2693  // objects in STL containers.
2694  Cardinality() {}
2695 
2696  // Constructs a Cardinality from its implementation.
2697  explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
2698 
2699  // Conservative estimate on the lower/upper bound of the number of
2700  // calls allowed.
2701  int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
2702  int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
2703 
2704  // Returns true if and only if call_count calls will satisfy this
2705  // cardinality.
2706  bool IsSatisfiedByCallCount(int call_count) const {
2707  return impl_->IsSatisfiedByCallCount(call_count);
2708  }
2709 
2710  // Returns true if and only if call_count calls will saturate this
2711  // cardinality.
2712  bool IsSaturatedByCallCount(int call_count) const {
2713  return impl_->IsSaturatedByCallCount(call_count);
2714  }
2715 
2716  // Returns true if and only if call_count calls will over-saturate this
2717  // cardinality, i.e. exceed the maximum number of allowed calls.
2718  bool IsOverSaturatedByCallCount(int call_count) const {
2719  return impl_->IsSaturatedByCallCount(call_count) &&
2720  !impl_->IsSatisfiedByCallCount(call_count);
2721  }
2722 
2723  // Describes self to an ostream
2724  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
2725 
2726  // Describes the given actual call count to an ostream.
2727  static void DescribeActualCallCountTo(int actual_call_count,
2728  ::std::ostream* os);
2729 
2730  private:
2731  std::shared_ptr<const CardinalityInterface> impl_;
2732 };
2733 
2734 // Creates a cardinality that allows at least n calls.
2735 GTEST_API_ Cardinality AtLeast(int n);
2736 
2737 // Creates a cardinality that allows at most n calls.
2738 GTEST_API_ Cardinality AtMost(int n);
2739 
2740 // Creates a cardinality that allows any number of calls.
2741 GTEST_API_ Cardinality AnyNumber();
2742 
2743 // Creates a cardinality that allows between min and max calls.
2744 GTEST_API_ Cardinality Between(int min, int max);
2745 
2746 // Creates a cardinality that allows exactly n calls.
2747 GTEST_API_ Cardinality Exactly(int n);
2748 
2749 // Creates a cardinality from its implementation.
2750 inline Cardinality MakeCardinality(const CardinalityInterface* c) {
2751  return Cardinality(c);
2752 }
2753 
2754 } // namespace testing
2755 
2756 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
2757 
2758 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2759 // Copyright 2007, Google Inc.
2760 // All rights reserved.
2761 //
2762 // Redistribution and use in source and binary forms, with or without
2763 // modification, are permitted provided that the following conditions are
2764 // met:
2765 //
2766 // * Redistributions of source code must retain the above copyright
2767 // notice, this list of conditions and the following disclaimer.
2768 // * Redistributions in binary form must reproduce the above
2769 // copyright notice, this list of conditions and the following disclaimer
2770 // in the documentation and/or other materials provided with the
2771 // distribution.
2772 // * Neither the name of Google Inc. nor the names of its
2773 // contributors may be used to endorse or promote products derived from
2774 // this software without specific prior written permission.
2775 //
2776 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2777 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2778 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2779 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2780 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2781 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2782 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2783 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2784 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2785 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2786 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2787 
2788 // Google Mock - a framework for writing C++ mock classes.
2789 //
2790 // This file implements MOCK_METHOD.
2791 
2792 // GOOGLETEST_CM0002 DO NOT DELETE
2793 
2794 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
2795 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
2796 
2797 #include <type_traits> // IWYU pragma: keep
2798 #include <utility> // IWYU pragma: keep
2799 
2800 // Copyright 2007, Google Inc.
2801 // All rights reserved.
2802 //
2803 // Redistribution and use in source and binary forms, with or without
2804 // modification, are permitted provided that the following conditions are
2805 // met:
2806 //
2807 // * Redistributions of source code must retain the above copyright
2808 // notice, this list of conditions and the following disclaimer.
2809 // * Redistributions in binary form must reproduce the above
2810 // copyright notice, this list of conditions and the following disclaimer
2811 // in the documentation and/or other materials provided with the
2812 // distribution.
2813 // * Neither the name of Google Inc. nor the names of its
2814 // contributors may be used to endorse or promote products derived from
2815 // this software without specific prior written permission.
2816 //
2817 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2818 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2819 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2820 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2821 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2822 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2823 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2824 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2825 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2826 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2827 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2828 
2829 
2830 // Google Mock - a framework for writing C++ mock classes.
2831 //
2832 // This file implements the ON_CALL() and EXPECT_CALL() macros.
2833 //
2834 // A user can use the ON_CALL() macro to specify the default action of
2835 // a mock method. The syntax is:
2836 //
2837 // ON_CALL(mock_object, Method(argument-matchers))
2838 // .With(multi-argument-matcher)
2839 // .WillByDefault(action);
2840 //
2841 // where the .With() clause is optional.
2842 //
2843 // A user can use the EXPECT_CALL() macro to specify an expectation on
2844 // a mock method. The syntax is:
2845 //
2846 // EXPECT_CALL(mock_object, Method(argument-matchers))
2847 // .With(multi-argument-matchers)
2848 // .Times(cardinality)
2849 // .InSequence(sequences)
2850 // .After(expectations)
2851 // .WillOnce(action)
2852 // .WillRepeatedly(action)
2853 // .RetiresOnSaturation();
2854 //
2855 // where all clauses are optional, and .InSequence()/.After()/
2856 // .WillOnce() can appear any number of times.
2857 
2858 // GOOGLETEST_CM0002 DO NOT DELETE
2859 
2860 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2861 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2862 
2863 #include <cstdint>
2864 #include <functional>
2865 #include <map>
2866 #include <memory>
2867 #include <set>
2868 #include <sstream>
2869 #include <string>
2870 #include <type_traits>
2871 #include <utility>
2872 #include <vector>
2873 // Copyright 2007, Google Inc.
2874 // All rights reserved.
2875 //
2876 // Redistribution and use in source and binary forms, with or without
2877 // modification, are permitted provided that the following conditions are
2878 // met:
2879 //
2880 // * Redistributions of source code must retain the above copyright
2881 // notice, this list of conditions and the following disclaimer.
2882 // * Redistributions in binary form must reproduce the above
2883 // copyright notice, this list of conditions and the following disclaimer
2884 // in the documentation and/or other materials provided with the
2885 // distribution.
2886 // * Neither the name of Google Inc. nor the names of its
2887 // contributors may be used to endorse or promote products derived from
2888 // this software without specific prior written permission.
2889 //
2890 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2891 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2892 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2893 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2894 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2895 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2896 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2897 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2898 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2899 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2900 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2901 
2902 
2903 // Google Mock - a framework for writing C++ mock classes.
2904 //
2905 // The MATCHER* family of macros can be used in a namespace scope to
2906 // define custom matchers easily.
2907 //
2908 // Basic Usage
2909 // ===========
2910 //
2911 // The syntax
2912 //
2913 // MATCHER(name, description_string) { statements; }
2914 //
2915 // defines a matcher with the given name that executes the statements,
2916 // which must return a bool to indicate if the match succeeds. Inside
2917 // the statements, you can refer to the value being matched by 'arg',
2918 // and refer to its type by 'arg_type'.
2919 //
2920 // The description string documents what the matcher does, and is used
2921 // to generate the failure message when the match fails. Since a
2922 // MATCHER() is usually defined in a header file shared by multiple
2923 // C++ source files, we require the description to be a C-string
2924 // literal to avoid possible side effects. It can be empty, in which
2925 // case we'll use the sequence of words in the matcher name as the
2926 // description.
2927 //
2928 // For example:
2929 //
2930 // MATCHER(IsEven, "") { return (arg % 2) == 0; }
2931 //
2932 // allows you to write
2933 //
2934 // // Expects mock_foo.Bar(n) to be called where n is even.
2935 // EXPECT_CALL(mock_foo, Bar(IsEven()));
2936 //
2937 // or,
2938 //
2939 // // Verifies that the value of some_expression is even.
2940 // EXPECT_THAT(some_expression, IsEven());
2941 //
2942 // If the above assertion fails, it will print something like:
2943 //
2944 // Value of: some_expression
2945 // Expected: is even
2946 // Actual: 7
2947 //
2948 // where the description "is even" is automatically calculated from the
2949 // matcher name IsEven.
2950 //
2951 // Argument Type
2952 // =============
2953 //
2954 // Note that the type of the value being matched (arg_type) is
2955 // determined by the context in which you use the matcher and is
2956 // supplied to you by the compiler, so you don't need to worry about
2957 // declaring it (nor can you). This allows the matcher to be
2958 // polymorphic. For example, IsEven() can be used to match any type
2959 // where the value of "(arg % 2) == 0" can be implicitly converted to
2960 // a bool. In the "Bar(IsEven())" example above, if method Bar()
2961 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
2962 // 'arg_type' will be unsigned long; and so on.
2963 //
2964 // Parameterizing Matchers
2965 // =======================
2966 //
2967 // Sometimes you'll want to parameterize the matcher. For that you
2968 // can use another macro:
2969 //
2970 // MATCHER_P(name, param_name, description_string) { statements; }
2971 //
2972 // For example:
2973 //
2974 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
2975 //
2976 // will allow you to write:
2977 //
2978 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
2979 //
2980 // which may lead to this message (assuming n is 10):
2981 //
2982 // Value of: Blah("a")
2983 // Expected: has absolute value 10
2984 // Actual: -9
2985 //
2986 // Note that both the matcher description and its parameter are
2987 // printed, making the message human-friendly.
2988 //
2989 // In the matcher definition body, you can write 'foo_type' to
2990 // reference the type of a parameter named 'foo'. For example, in the
2991 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
2992 // 'value_type' to refer to the type of 'value'.
2993 //
2994 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
2995 // support multi-parameter matchers.
2996 //
2997 // Describing Parameterized Matchers
2998 // =================================
2999 //
3000 // The last argument to MATCHER*() is a string-typed expression. The
3001 // expression can reference all of the matcher's parameters and a
3002 // special bool-typed variable named 'negation'. When 'negation' is
3003 // false, the expression should evaluate to the matcher's description;
3004 // otherwise it should evaluate to the description of the negation of
3005 // the matcher. For example,
3006 //
3007 // using testing::PrintToString;
3008 //
3009 // MATCHER_P2(InClosedRange, low, hi,
3010 // std::string(negation ? "is not" : "is") + " in range [" +
3011 // PrintToString(low) + ", " + PrintToString(hi) + "]") {
3012 // return low <= arg && arg <= hi;
3013 // }
3014 // ...
3015 // EXPECT_THAT(3, InClosedRange(4, 6));
3016 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3017 //
3018 // would generate two failures that contain the text:
3019 //
3020 // Expected: is in range [4, 6]
3021 // ...
3022 // Expected: is not in range [2, 4]
3023 //
3024 // If you specify "" as the description, the failure message will
3025 // contain the sequence of words in the matcher name followed by the
3026 // parameter values printed as a tuple. For example,
3027 //
3028 // MATCHER_P2(InClosedRange, low, hi, "") { ... }
3029 // ...
3030 // EXPECT_THAT(3, InClosedRange(4, 6));
3031 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3032 //
3033 // would generate two failures that contain the text:
3034 //
3035 // Expected: in closed range (4, 6)
3036 // ...
3037 // Expected: not (in closed range (2, 4))
3038 //
3039 // Types of Matcher Parameters
3040 // ===========================
3041 //
3042 // For the purpose of typing, you can view
3043 //
3044 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
3045 //
3046 // as shorthand for
3047 //
3048 // template <typename p1_type, ..., typename pk_type>
3049 // FooMatcherPk<p1_type, ..., pk_type>
3050 // Foo(p1_type p1, ..., pk_type pk) { ... }
3051 //
3052 // When you write Foo(v1, ..., vk), the compiler infers the types of
3053 // the parameters v1, ..., and vk for you. If you are not happy with
3054 // the result of the type inference, you can specify the types by
3055 // explicitly instantiating the template, as in Foo<long, bool>(5,
3056 // false). As said earlier, you don't get to (or need to) specify
3057 // 'arg_type' as that's determined by the context in which the matcher
3058 // is used. You can assign the result of expression Foo(p1, ..., pk)
3059 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
3060 // can be useful when composing matchers.
3061 //
3062 // While you can instantiate a matcher template with reference types,
3063 // passing the parameters by pointer usually makes your code more
3064 // readable. If, however, you still want to pass a parameter by
3065 // reference, be aware that in the failure message generated by the
3066 // matcher you will see the value of the referenced object but not its
3067 // address.
3068 //
3069 // Explaining Match Results
3070 // ========================
3071 //
3072 // Sometimes the matcher description alone isn't enough to explain why
3073 // the match has failed or succeeded. For example, when expecting a
3074 // long string, it can be very helpful to also print the diff between
3075 // the expected string and the actual one. To achieve that, you can
3076 // optionally stream additional information to a special variable
3077 // named result_listener, whose type is a pointer to class
3078 // MatchResultListener:
3079 //
3080 // MATCHER_P(EqualsLongString, str, "") {
3081 // if (arg == str) return true;
3082 //
3083 // *result_listener << "the difference: "
3085 // return false;
3086 // }
3087 //
3088 // Overloading Matchers
3089 // ====================
3090 //
3091 // You can overload matchers with different numbers of parameters:
3092 //
3093 // MATCHER_P(Blah, a, description_string1) { ... }
3094 // MATCHER_P2(Blah, a, b, description_string2) { ... }
3095 //
3096 // Caveats
3097 // =======
3098 //
3099 // When defining a new matcher, you should also consider implementing
3100 // MatcherInterface or using MakePolymorphicMatcher(). These
3101 // approaches require more work than the MATCHER* macros, but also
3102 // give you more control on the types of the value being matched and
3103 // the matcher parameters, which may leads to better compiler error
3104 // messages when the matcher is used wrong. They also allow
3105 // overloading matchers based on parameter types (as opposed to just
3106 // based on the number of parameters).
3107 //
3108 // MATCHER*() can only be used in a namespace scope as templates cannot be
3109 // declared inside of a local class.
3110 //
3111 // More Information
3112 // ================
3113 //
3114 // To learn more about using these macros, please search for 'MATCHER'
3115 // on
3116 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
3117 //
3118 // This file also implements some commonly used argument matchers. More
3119 // matchers can be defined by the user implementing the
3120 // MatcherInterface<T> interface if necessary.
3121 //
3122 // See googletest/include/gtest/gtest-matchers.h for the definition of class
3123 // Matcher, class MatcherInterface, and others.
3124 
3125 // GOOGLETEST_CM0002 DO NOT DELETE
3126 
3127 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3128 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3129 
3130 #include <algorithm>
3131 #include <cmath>
3132 #include <initializer_list>
3133 #include <iterator>
3134 #include <limits>
3135 #include <memory>
3136 #include <ostream> // NOLINT
3137 #include <sstream>
3138 #include <string>
3139 #include <type_traits>
3140 #include <utility>
3141 #include <vector>
3142 
3143 
3144 // MSVC warning C5046 is new as of VS2017 version 15.8.
3145 #if defined(_MSC_VER) && _MSC_VER >= 1915
3146 #define GMOCK_MAYBE_5046_ 5046
3147 #else
3148 #define GMOCK_MAYBE_5046_
3149 #endif
3150 
3151 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
3152  4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
3153  clients of class B */
3154  /* Symbol involving type with internal linkage not defined */)
3155 
3156 namespace testing {
3157 
3158 // To implement a matcher Foo for type T, define:
3159 // 1. a class FooMatcherImpl that implements the
3160 // MatcherInterface<T> interface, and
3161 // 2. a factory function that creates a Matcher<T> object from a
3162 // FooMatcherImpl*.
3163 //
3164 // The two-level delegation design makes it possible to allow a user
3165 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
3166 // is impossible if we pass matchers by pointers. It also eases
3167 // ownership management as Matcher objects can now be copied like
3168 // plain values.
3169 
3170 // A match result listener that stores the explanation in a string.
3171 class StringMatchResultListener : public MatchResultListener {
3172  public:
3173  StringMatchResultListener() : MatchResultListener(&ss_) {}
3174 
3175  // Returns the explanation accumulated so far.
3176  std::string str() const { return ss_.str(); }
3177 
3178  // Clears the explanation accumulated so far.
3179  void Clear() { ss_.str(""); }
3180 
3181  private:
3182  ::std::stringstream ss_;
3183 
3184  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
3185 };
3186 
3187 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3188 // and MUST NOT BE USED IN USER CODE!!!
3189 namespace internal {
3190 
3191 // The MatcherCastImpl class template is a helper for implementing
3192 // MatcherCast(). We need this helper in order to partially
3193 // specialize the implementation of MatcherCast() (C++ allows
3194 // class/struct templates to be partially specialized, but not
3195 // function templates.).
3196 
3197 // This general version is used when MatcherCast()'s argument is a
3198 // polymorphic matcher (i.e. something that can be converted to a
3199 // Matcher but is not one yet; for example, Eq(value)) or a value (for
3200 // example, "hello").
3201 template <typename T, typename M>
3202 class MatcherCastImpl {
3203  public:
3204  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
3205  // M can be a polymorphic matcher, in which case we want to use
3206  // its conversion operator to create Matcher<T>. Or it can be a value
3207  // that should be passed to the Matcher<T>'s constructor.
3208  //
3209  // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
3210  // polymorphic matcher because it'll be ambiguous if T has an implicit
3211  // constructor from M (this usually happens when T has an implicit
3212  // constructor from any type).
3213  //
3214  // It won't work to unconditionally implicit_cast
3215  // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
3216  // a user-defined conversion from M to T if one exists (assuming M is
3217  // a value).
3218  return CastImpl(polymorphic_matcher_or_value,
3219  std::is_convertible<M, Matcher<T>>{},
3220  std::is_convertible<M, T>{});
3221  }
3222 
3223  private:
3224  template <bool Ignore>
3225  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
3226  std::true_type /* convertible_to_matcher */,
3227  std::integral_constant<bool, Ignore>) {
3228  // M is implicitly convertible to Matcher<T>, which means that either
3229  // M is a polymorphic matcher or Matcher<T> has an implicit constructor
3230  // from M. In both cases using the implicit conversion will produce a
3231  // matcher.
3232  //
3233  // Even if T has an implicit constructor from M, it won't be called because
3234  // creating Matcher<T> would require a chain of two user-defined conversions
3235  // (first to create T from M and then to create Matcher<T> from T).
3236  return polymorphic_matcher_or_value;
3237  }
3238 
3239  // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
3240  // matcher. It's a value of a type implicitly convertible to T. Use direct
3241  // initialization to create a matcher.
3242  static Matcher<T> CastImpl(const M& value,
3243  std::false_type /* convertible_to_matcher */,
3244  std::true_type /* convertible_to_T */) {
3245  return Matcher<T>(ImplicitCast_<T>(value));
3246  }
3247 
3248  // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
3249  // polymorphic matcher Eq(value) in this case.
3250  //
3251  // Note that we first attempt to perform an implicit cast on the value and
3252  // only fall back to the polymorphic Eq() matcher afterwards because the
3253  // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
3254  // which might be undefined even when Rhs is implicitly convertible to Lhs
3255  // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
3256  //
3257  // We don't define this method inline as we need the declaration of Eq().
3258  static Matcher<T> CastImpl(const M& value,
3259  std::false_type /* convertible_to_matcher */,
3260  std::false_type /* convertible_to_T */);
3261 };
3262 
3263 // This more specialized version is used when MatcherCast()'s argument
3264 // is already a Matcher. This only compiles when type T can be
3265 // statically converted to type U.
3266 template <typename T, typename U>
3267 class MatcherCastImpl<T, Matcher<U> > {
3268  public:
3269  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
3270  return Matcher<T>(new Impl(source_matcher));
3271  }
3272 
3273  private:
3274  class Impl : public MatcherInterface<T> {
3275  public:
3276  explicit Impl(const Matcher<U>& source_matcher)
3277  : source_matcher_(source_matcher) {}
3278 
3279  // We delegate the matching logic to the source matcher.
3280  bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3281  using FromType = typename std::remove_cv<typename std::remove_pointer<
3282  typename std::remove_reference<T>::type>::type>::type;
3283  using ToType = typename std::remove_cv<typename std::remove_pointer<
3284  typename std::remove_reference<U>::type>::type>::type;
3285  // Do not allow implicitly converting base*/& to derived*/&.
3286  static_assert(
3287  // Do not trigger if only one of them is a pointer. That implies a
3288  // regular conversion and not a down_cast.
3289  (std::is_pointer<typename std::remove_reference<T>::type>::value !=
3290  std::is_pointer<typename std::remove_reference<U>::type>::value) ||
3291  std::is_same<FromType, ToType>::value ||
3292  !std::is_base_of<FromType, ToType>::value,
3293  "Can't implicitly convert from <base> to <derived>");
3294 
3295  // Do the cast to `U` explicitly if necessary.
3296  // Otherwise, let implicit conversions do the trick.
3297  using CastType =
3298  typename std::conditional<std::is_convertible<T&, const U&>::value,
3299  T&, U>::type;
3300 
3301  return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
3302  listener);
3303  }
3304 
3305  void DescribeTo(::std::ostream* os) const override {
3306  source_matcher_.DescribeTo(os);
3307  }
3308 
3309  void DescribeNegationTo(::std::ostream* os) const override {
3310  source_matcher_.DescribeNegationTo(os);
3311  }
3312 
3313  private:
3314  const Matcher<U> source_matcher_;
3315  };
3316 };
3317 
3318 // This even more specialized version is used for efficiently casting
3319 // a matcher to its own type.
3320 template <typename T>
3321 class MatcherCastImpl<T, Matcher<T> > {
3322  public:
3323  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
3324 };
3325 
3326 // Template specialization for parameterless Matcher.
3327 template <typename Derived>
3328 class MatcherBaseImpl {
3329  public:
3330  MatcherBaseImpl() = default;
3331 
3332  template <typename T>
3333  operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
3334  return ::testing::Matcher<T>(new
3335  typename Derived::template gmock_Impl<T>());
3336  }
3337 };
3338 
3339 // Template specialization for Matcher with parameters.
3340 template <template <typename...> class Derived, typename... Ts>
3341 class MatcherBaseImpl<Derived<Ts...>> {
3342  public:
3343  // Mark the constructor explicit for single argument T to avoid implicit
3344  // conversions.
3345  template <typename E = std::enable_if<sizeof...(Ts) == 1>,
3346  typename E::type* = nullptr>
3347  explicit MatcherBaseImpl(Ts... params)
3348  : params_(std::forward<Ts>(params)...) {}
3349  template <typename E = std::enable_if<sizeof...(Ts) != 1>,
3350  typename = typename E::type>
3351  MatcherBaseImpl(Ts... params) // NOLINT
3352  : params_(std::forward<Ts>(params)...) {}
3353 
3354  template <typename F>
3355  operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
3356  return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
3357  }
3358 
3359  private:
3360  template <typename F, std::size_t... tuple_ids>
3361  ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
3362  return ::testing::Matcher<F>(
3363  new typename Derived<Ts...>::template gmock_Impl<F>(
3364  std::get<tuple_ids>(params_)...));
3365  }
3366 
3367  const std::tuple<Ts...> params_;
3368 };
3369 
3370 } // namespace internal
3371 
3372 // In order to be safe and clear, casting between different matcher
3373 // types is done explicitly via MatcherCast<T>(m), which takes a
3374 // matcher m and returns a Matcher<T>. It compiles only when T can be
3375 // statically converted to the argument type of m.
3376 template <typename T, typename M>
3377 inline Matcher<T> MatcherCast(const M& matcher) {
3378  return internal::MatcherCastImpl<T, M>::Cast(matcher);
3379 }
3380 
3381 // This overload handles polymorphic matchers and values only since
3382 // monomorphic matchers are handled by the next one.
3383 template <typename T, typename M>
3384 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
3385  return MatcherCast<T>(polymorphic_matcher_or_value);
3386 }
3387 
3388 // This overload handles monomorphic matchers.
3389 //
3390 // In general, if type T can be implicitly converted to type U, we can
3391 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
3392 // contravariant): just keep a copy of the original Matcher<U>, convert the
3393 // argument from type T to U, and then pass it to the underlying Matcher<U>.
3394 // The only exception is when U is a reference and T is not, as the
3395 // underlying Matcher<U> may be interested in the argument's address, which
3396 // is not preserved in the conversion from T to U.
3397 template <typename T, typename U>
3398 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
3399  // Enforce that T can be implicitly converted to U.
3400  static_assert(std::is_convertible<const T&, const U&>::value,
3401  "T must be implicitly convertible to U");
3402  // Enforce that we are not converting a non-reference type T to a reference
3403  // type U.
3404  GTEST_COMPILE_ASSERT_(
3405  std::is_reference<T>::value || !std::is_reference<U>::value,
3406  cannot_convert_non_reference_arg_to_reference);
3407  // In case both T and U are arithmetic types, enforce that the
3408  // conversion is not lossy.
3409  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
3410  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
3411  constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
3412  constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
3413  GTEST_COMPILE_ASSERT_(
3414  kTIsOther || kUIsOther ||
3415  (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
3416  conversion_of_arithmetic_types_must_be_lossless);
3417  return MatcherCast<T>(matcher);
3418 }
3419 
3420 // A<T>() returns a matcher that matches any value of type T.
3421 template <typename T>
3422 Matcher<T> A();
3423 
3424 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3425 // and MUST NOT BE USED IN USER CODE!!!
3426 namespace internal {
3427 
3428 // If the explanation is not empty, prints it to the ostream.
3429 inline void PrintIfNotEmpty(const std::string& explanation,
3430  ::std::ostream* os) {
3431  if (explanation != "" && os != nullptr) {
3432  *os << ", " << explanation;
3433  }
3434 }
3435 
3436 // Returns true if the given type name is easy to read by a human.
3437 // This is used to decide whether printing the type of a value might
3438 // be helpful.
3439 inline bool IsReadableTypeName(const std::string& type_name) {
3440  // We consider a type name readable if it's short or doesn't contain
3441  // a template or function type.
3442  return (type_name.length() <= 20 ||
3443  type_name.find_first_of("<(") == std::string::npos);
3444 }
3445 
3446 // Matches the value against the given matcher, prints the value and explains
3447 // the match result to the listener. Returns the match result.
3448 // 'listener' must not be NULL.
3449 // Value cannot be passed by const reference, because some matchers take a
3450 // non-const argument.
3451 template <typename Value, typename T>
3452 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
3453  MatchResultListener* listener) {
3454  if (!listener->IsInterested()) {
3455  // If the listener is not interested, we do not need to construct the
3456  // inner explanation.
3457  return matcher.Matches(value);
3458  }
3459 
3460  StringMatchResultListener inner_listener;
3461  const bool match = matcher.MatchAndExplain(value, &inner_listener);
3462 
3463  UniversalPrint(value, listener->stream());
3464 #if GTEST_HAS_RTTI
3465  const std::string& type_name = GetTypeName<Value>();
3466  if (IsReadableTypeName(type_name))
3467  *listener->stream() << " (of type " << type_name << ")";
3468 #endif
3469  PrintIfNotEmpty(inner_listener.str(), listener->stream());
3470 
3471  return match;
3472 }
3473 
3474 // An internal helper class for doing compile-time loop on a tuple's
3475 // fields.
3476 template <size_t N>
3477 class TuplePrefix {
3478  public:
3479  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
3480  // if and only if the first N fields of matcher_tuple matches
3481  // the first N fields of value_tuple, respectively.
3482  template <typename MatcherTuple, typename ValueTuple>
3483  static bool Matches(const MatcherTuple& matcher_tuple,
3484  const ValueTuple& value_tuple) {
3485  return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
3486  std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
3487  }
3488 
3489  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
3490  // describes failures in matching the first N fields of matchers
3491  // against the first N fields of values. If there is no failure,
3492  // nothing will be streamed to os.
3493  template <typename MatcherTuple, typename ValueTuple>
3494  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
3495  const ValueTuple& values,
3496  ::std::ostream* os) {
3497  // First, describes failures in the first N - 1 fields.
3498  TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
3499 
3500  // Then describes the failure (if any) in the (N - 1)-th (0-based)
3501  // field.
3502  typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
3503  std::get<N - 1>(matchers);
3504  typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
3505  const Value& value = std::get<N - 1>(values);
3506  StringMatchResultListener listener;
3507  if (!matcher.MatchAndExplain(value, &listener)) {
3508  *os << " Expected arg #" << N - 1 << ": ";
3509  std::get<N - 1>(matchers).DescribeTo(os);
3510  *os << "\n Actual: ";
3511  // We remove the reference in type Value to prevent the
3512  // universal printer from printing the address of value, which
3513  // isn't interesting to the user most of the time. The
3514  // matcher's MatchAndExplain() method handles the case when
3515  // the address is interesting.
3516  internal::UniversalPrint(value, os);
3517  PrintIfNotEmpty(listener.str(), os);
3518  *os << "\n";
3519  }
3520  }
3521 };
3522 
3523 // The base case.
3524 template <>
3525 class TuplePrefix<0> {
3526  public:
3527  template <typename MatcherTuple, typename ValueTuple>
3528  static bool Matches(const MatcherTuple& /* matcher_tuple */,
3529  const ValueTuple& /* value_tuple */) {
3530  return true;
3531  }
3532 
3533  template <typename MatcherTuple, typename ValueTuple>
3534  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
3535  const ValueTuple& /* values */,
3536  ::std::ostream* /* os */) {}
3537 };
3538 
3539 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
3540 // all matchers in matcher_tuple match the corresponding fields in
3541 // value_tuple. It is a compiler error if matcher_tuple and
3542 // value_tuple have different number of fields or incompatible field
3543 // types.
3544 template <typename MatcherTuple, typename ValueTuple>
3545 bool TupleMatches(const MatcherTuple& matcher_tuple,
3546  const ValueTuple& value_tuple) {
3547  // Makes sure that matcher_tuple and value_tuple have the same
3548  // number of fields.
3549  GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
3550  std::tuple_size<ValueTuple>::value,
3551  matcher_and_value_have_different_numbers_of_fields);
3552  return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
3553  value_tuple);
3554 }
3555 
3556 // Describes failures in matching matchers against values. If there
3557 // is no failure, nothing will be streamed to os.
3558 template <typename MatcherTuple, typename ValueTuple>
3559 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
3560  const ValueTuple& values,
3561  ::std::ostream* os) {
3562  TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
3563  matchers, values, os);
3564 }
3565 
3566 // TransformTupleValues and its helper.
3567 //
3568 // TransformTupleValuesHelper hides the internal machinery that
3569 // TransformTupleValues uses to implement a tuple traversal.
3570 template <typename Tuple, typename Func, typename OutIter>
3571 class TransformTupleValuesHelper {
3572  private:
3573  typedef ::std::tuple_size<Tuple> TupleSize;
3574 
3575  public:
3576  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
3577  // Returns the final value of 'out' in case the caller needs it.
3578  static OutIter Run(Func f, const Tuple& t, OutIter out) {
3579  return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
3580  }
3581 
3582  private:
3583  template <typename Tup, size_t kRemainingSize>
3584  struct IterateOverTuple {
3585  OutIter operator() (Func f, const Tup& t, OutIter out) const {
3586  *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
3587  return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
3588  }
3589  };
3590  template <typename Tup>
3591  struct IterateOverTuple<Tup, 0> {
3592  OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
3593  return out;
3594  }
3595  };
3596 };
3597 
3598 // Successively invokes 'f(element)' on each element of the tuple 't',
3599 // appending each result to the 'out' iterator. Returns the final value
3600 // of 'out'.
3601 template <typename Tuple, typename Func, typename OutIter>
3602 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
3603  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
3604 }
3605 
3606 // Implements _, a matcher that matches any value of any
3607 // type. This is a polymorphic matcher, so we need a template type
3608 // conversion operator to make it appearing as a Matcher<T> for any
3609 // type T.
3610 class AnythingMatcher {
3611  public:
3612  using is_gtest_matcher = void;
3613 
3614  template <typename T>
3615  bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
3616  return true;
3617  }
3618  void DescribeTo(std::ostream* os) const { *os << "is anything"; }
3619  void DescribeNegationTo(::std::ostream* os) const {
3620  // This is mostly for completeness' sake, as it's not very useful
3621  // to write Not(A<bool>()). However we cannot completely rule out
3622  // such a possibility, and it doesn't hurt to be prepared.
3623  *os << "never matches";
3624  }
3625 };
3626 
3627 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
3628 // pointer that is NULL.
3629 class IsNullMatcher {
3630  public:
3631  template <typename Pointer>
3632  bool MatchAndExplain(const Pointer& p,
3633  MatchResultListener* /* listener */) const {
3634  return p == nullptr;
3635  }
3636 
3637  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
3638  void DescribeNegationTo(::std::ostream* os) const {
3639  *os << "isn't NULL";
3640  }
3641 };
3642 
3643 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
3644 // pointer that is not NULL.
3645 class NotNullMatcher {
3646  public:
3647  template <typename Pointer>
3648  bool MatchAndExplain(const Pointer& p,
3649  MatchResultListener* /* listener */) const {
3650  return p != nullptr;
3651  }
3652 
3653  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
3654  void DescribeNegationTo(::std::ostream* os) const {
3655  *os << "is NULL";
3656  }
3657 };
3658 
3659 // Ref(variable) matches any argument that is a reference to
3660 // 'variable'. This matcher is polymorphic as it can match any
3661 // super type of the type of 'variable'.
3662 //
3663 // The RefMatcher template class implements Ref(variable). It can
3664 // only be instantiated with a reference type. This prevents a user
3665 // from mistakenly using Ref(x) to match a non-reference function
3666 // argument. For example, the following will righteously cause a
3667 // compiler error:
3668 //
3669 // int n;
3670 // Matcher<int> m1 = Ref(n); // This won't compile.
3671 // Matcher<int&> m2 = Ref(n); // This will compile.
3672 template <typename T>
3673 class RefMatcher;
3674 
3675 template <typename T>
3676 class RefMatcher<T&> {
3677  // Google Mock is a generic framework and thus needs to support
3678  // mocking any function types, including those that take non-const
3679  // reference arguments. Therefore the template parameter T (and
3680  // Super below) can be instantiated to either a const type or a
3681  // non-const type.
3682  public:
3683  // RefMatcher() takes a T& instead of const T&, as we want the
3684  // compiler to catch using Ref(const_value) as a matcher for a
3685  // non-const reference.
3686  explicit RefMatcher(T& x) : object_(x) {} // NOLINT
3687 
3688  template <typename Super>
3689  operator Matcher<Super&>() const {
3690  // By passing object_ (type T&) to Impl(), which expects a Super&,
3691  // we make sure that Super is a super type of T. In particular,
3692  // this catches using Ref(const_value) as a matcher for a
3693  // non-const reference, as you cannot implicitly convert a const
3694  // reference to a non-const reference.
3695  return MakeMatcher(new Impl<Super>(object_));
3696  }
3697 
3698  private:
3699  template <typename Super>
3700  class Impl : public MatcherInterface<Super&> {
3701  public:
3702  explicit Impl(Super& x) : object_(x) {} // NOLINT
3703 
3704  // MatchAndExplain() takes a Super& (as opposed to const Super&)
3705  // in order to match the interface MatcherInterface<Super&>.
3706  bool MatchAndExplain(Super& x,
3707  MatchResultListener* listener) const override {
3708  *listener << "which is located @" << static_cast<const void*>(&x);
3709  return &x == &object_;
3710  }
3711 
3712  void DescribeTo(::std::ostream* os) const override {
3713  *os << "references the variable ";
3714  UniversalPrinter<Super&>::Print(object_, os);
3715  }
3716 
3717  void DescribeNegationTo(::std::ostream* os) const override {
3718  *os << "does not reference the variable ";
3719  UniversalPrinter<Super&>::Print(object_, os);
3720  }
3721 
3722  private:
3723  const Super& object_;
3724  };
3725 
3726  T& object_;
3727 };
3728 
3729 // Polymorphic helper functions for narrow and wide string matchers.
3730 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
3731  return String::CaseInsensitiveCStringEquals(lhs, rhs);
3732 }
3733 
3734 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
3735  const wchar_t* rhs) {
3736  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
3737 }
3738 
3739 // String comparison for narrow or wide strings that can have embedded NUL
3740 // characters.
3741 template <typename StringType>
3742 bool CaseInsensitiveStringEquals(const StringType& s1,
3743  const StringType& s2) {
3744  // Are the heads equal?
3745  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
3746  return false;
3747  }
3748 
3749  // Skip the equal heads.
3750  const typename StringType::value_type nul = 0;
3751  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
3752 
3753  // Are we at the end of either s1 or s2?
3754  if (i1 == StringType::npos || i2 == StringType::npos) {
3755  return i1 == i2;
3756  }
3757 
3758  // Are the tails equal?
3759  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
3760 }
3761 
3762 // String matchers.
3763 
3764 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
3765 template <typename StringType>
3766 class StrEqualityMatcher {
3767  public:
3768  StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
3769  : string_(std::move(str)),
3770  expect_eq_(expect_eq),
3771  case_sensitive_(case_sensitive) {}
3772 
3773 #if GTEST_INTERNAL_HAS_STRING_VIEW
3774  bool MatchAndExplain(const internal::StringView& s,
3775  MatchResultListener* listener) const {
3776  // This should fail to compile if StringView is used with wide
3777  // strings.
3778  const StringType& str = std::string(s);
3779  return MatchAndExplain(str, listener);
3780  }
3781 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
3782 
3783  // Accepts pointer types, particularly:
3784  // const char*
3785  // char*
3786  // const wchar_t*
3787  // wchar_t*
3788  template <typename CharType>
3789  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3790  if (s == nullptr) {
3791  return !expect_eq_;
3792  }
3793  return MatchAndExplain(StringType(s), listener);
3794  }
3795 
3796  // Matches anything that can convert to StringType.
3797  //
3798  // This is a template, not just a plain function with const StringType&,
3799  // because StringView has some interfering non-explicit constructors.
3800  template <typename MatcheeStringType>
3801  bool MatchAndExplain(const MatcheeStringType& s,
3802  MatchResultListener* /* listener */) const {
3803  const StringType s2(s);
3804  const bool eq = case_sensitive_ ? s2 == string_ :
3805  CaseInsensitiveStringEquals(s2, string_);
3806  return expect_eq_ == eq;
3807  }
3808 
3809  void DescribeTo(::std::ostream* os) const {
3810  DescribeToHelper(expect_eq_, os);
3811  }
3812 
3813  void DescribeNegationTo(::std::ostream* os) const {
3814  DescribeToHelper(!expect_eq_, os);
3815  }
3816 
3817  private:
3818  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
3819  *os << (expect_eq ? "is " : "isn't ");
3820  *os << "equal to ";
3821  if (!case_sensitive_) {
3822  *os << "(ignoring case) ";
3823  }
3824  UniversalPrint(string_, os);
3825  }
3826 
3827  const StringType string_;
3828  const bool expect_eq_;
3829  const bool case_sensitive_;
3830 };
3831 
3832 // Implements the polymorphic HasSubstr(substring) matcher, which
3833 // can be used as a Matcher<T> as long as T can be converted to a
3834 // string.
3835 template <typename StringType>
3836 class HasSubstrMatcher {
3837  public:
3838  explicit HasSubstrMatcher(const StringType& substring)
3839  : substring_(substring) {}
3840 
3841 #if GTEST_INTERNAL_HAS_STRING_VIEW
3842  bool MatchAndExplain(const internal::StringView& s,
3843  MatchResultListener* listener) const {
3844  // This should fail to compile if StringView is used with wide
3845  // strings.
3846  const StringType& str = std::string(s);
3847  return MatchAndExplain(str, listener);
3848  }
3849 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
3850 
3851  // Accepts pointer types, particularly:
3852  // const char*
3853  // char*
3854  // const wchar_t*
3855  // wchar_t*
3856  template <typename CharType>
3857  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3858  return s != nullptr && MatchAndExplain(StringType(s), listener);
3859  }
3860 
3861  // Matches anything that can convert to StringType.
3862  //
3863  // This is a template, not just a plain function with const StringType&,
3864  // because StringView has some interfering non-explicit constructors.
3865  template <typename MatcheeStringType>
3866  bool MatchAndExplain(const MatcheeStringType& s,
3867  MatchResultListener* /* listener */) const {
3868  return StringType(s).find(substring_) != StringType::npos;
3869  }
3870 
3871  // Describes what this matcher matches.
3872  void DescribeTo(::std::ostream* os) const {
3873  *os << "has substring ";
3874  UniversalPrint(substring_, os);
3875  }
3876 
3877  void DescribeNegationTo(::std::ostream* os) const {
3878  *os << "has no substring ";
3879  UniversalPrint(substring_, os);
3880  }
3881 
3882  private:
3883  const StringType substring_;
3884 };
3885 
3886 // Implements the polymorphic StartsWith(substring) matcher, which
3887 // can be used as a Matcher<T> as long as T can be converted to a
3888 // string.
3889 template <typename StringType>
3890 class StartsWithMatcher {
3891  public:
3892  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
3893  }
3894 
3895 #if GTEST_INTERNAL_HAS_STRING_VIEW
3896  bool MatchAndExplain(const internal::StringView& s,
3897  MatchResultListener* listener) const {
3898  // This should fail to compile if StringView is used with wide
3899  // strings.
3900  const StringType& str = std::string(s);
3901  return MatchAndExplain(str, listener);
3902  }
3903 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
3904 
3905  // Accepts pointer types, particularly:
3906  // const char*
3907  // char*
3908  // const wchar_t*
3909  // wchar_t*
3910  template <typename CharType>
3911  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3912  return s != nullptr && MatchAndExplain(StringType(s), listener);
3913  }
3914 
3915  // Matches anything that can convert to StringType.
3916  //
3917  // This is a template, not just a plain function with const StringType&,
3918  // because StringView has some interfering non-explicit constructors.
3919  template <typename MatcheeStringType>
3920  bool MatchAndExplain(const MatcheeStringType& s,
3921  MatchResultListener* /* listener */) const {
3922  const StringType& s2(s);
3923  return s2.length() >= prefix_.length() &&
3924  s2.substr(0, prefix_.length()) == prefix_;
3925  }
3926 
3927  void DescribeTo(::std::ostream* os) const {
3928  *os << "starts with ";
3929  UniversalPrint(prefix_, os);
3930  }
3931 
3932  void DescribeNegationTo(::std::ostream* os) const {
3933  *os << "doesn't start with ";
3934  UniversalPrint(prefix_, os);
3935  }
3936 
3937  private:
3938  const StringType prefix_;
3939 };
3940 
3941 // Implements the polymorphic EndsWith(substring) matcher, which
3942 // can be used as a Matcher<T> as long as T can be converted to a
3943 // string.
3944 template <typename StringType>
3945 class EndsWithMatcher {
3946  public:
3947  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
3948 
3949 #if GTEST_INTERNAL_HAS_STRING_VIEW
3950  bool MatchAndExplain(const internal::StringView& s,
3951  MatchResultListener* listener) const {
3952  // This should fail to compile if StringView is used with wide
3953  // strings.
3954  const StringType& str = std::string(s);
3955  return MatchAndExplain(str, listener);
3956  }
3957 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
3958 
3959  // Accepts pointer types, particularly:
3960  // const char*
3961  // char*
3962  // const wchar_t*
3963  // wchar_t*
3964  template <typename CharType>
3965  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3966  return s != nullptr && MatchAndExplain(StringType(s), listener);
3967  }
3968 
3969  // Matches anything that can convert to StringType.
3970  //
3971  // This is a template, not just a plain function with const StringType&,
3972  // because StringView has some interfering non-explicit constructors.
3973  template <typename MatcheeStringType>
3974  bool MatchAndExplain(const MatcheeStringType& s,
3975  MatchResultListener* /* listener */) const {
3976  const StringType& s2(s);
3977  return s2.length() >= suffix_.length() &&
3978  s2.substr(s2.length() - suffix_.length()) == suffix_;
3979  }
3980 
3981  void DescribeTo(::std::ostream* os) const {
3982  *os << "ends with ";
3983  UniversalPrint(suffix_, os);
3984  }
3985 
3986  void DescribeNegationTo(::std::ostream* os) const {
3987  *os << "doesn't end with ";
3988  UniversalPrint(suffix_, os);
3989  }
3990 
3991  private:
3992  const StringType suffix_;
3993 };
3994 
3995 // Implements a matcher that compares the two fields of a 2-tuple
3996 // using one of the ==, <=, <, etc, operators. The two fields being
3997 // compared don't have to have the same type.
3998 //
3999 // The matcher defined here is polymorphic (for example, Eq() can be
4000 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
4001 // etc). Therefore we use a template type conversion operator in the
4002 // implementation.
4003 template <typename D, typename Op>
4004 class PairMatchBase {
4005  public:
4006  template <typename T1, typename T2>
4007  operator Matcher<::std::tuple<T1, T2>>() const {
4008  return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
4009  }
4010  template <typename T1, typename T2>
4011  operator Matcher<const ::std::tuple<T1, T2>&>() const {
4012  return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
4013  }
4014 
4015  private:
4016  static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
4017  return os << D::Desc();
4018  }
4019 
4020  template <typename Tuple>
4021  class Impl : public MatcherInterface<Tuple> {
4022  public:
4023  bool MatchAndExplain(Tuple args,
4024  MatchResultListener* /* listener */) const override {
4025  return Op()(::std::get<0>(args), ::std::get<1>(args));
4026  }
4027  void DescribeTo(::std::ostream* os) const override {
4028  *os << "are " << GetDesc;
4029  }
4030  void DescribeNegationTo(::std::ostream* os) const override {
4031  *os << "aren't " << GetDesc;
4032  }
4033  };
4034 };
4035 
4036 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
4037  public:
4038  static const char* Desc() { return "an equal pair"; }
4039 };
4040 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
4041  public:
4042  static const char* Desc() { return "an unequal pair"; }
4043 };
4044 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
4045  public:
4046  static const char* Desc() { return "a pair where the first < the second"; }
4047 };
4048 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
4049  public:
4050  static const char* Desc() { return "a pair where the first > the second"; }
4051 };
4052 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
4053  public:
4054  static const char* Desc() { return "a pair where the first <= the second"; }
4055 };
4056 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
4057  public:
4058  static const char* Desc() { return "a pair where the first >= the second"; }
4059 };
4060 
4061 // Implements the Not(...) matcher for a particular argument type T.
4062 // We do not nest it inside the NotMatcher class template, as that
4063 // will prevent different instantiations of NotMatcher from sharing
4064 // the same NotMatcherImpl<T> class.
4065 template <typename T>
4066 class NotMatcherImpl : public MatcherInterface<const T&> {
4067  public:
4068  explicit NotMatcherImpl(const Matcher<T>& matcher)
4069  : matcher_(matcher) {}
4070 
4071  bool MatchAndExplain(const T& x,
4072  MatchResultListener* listener) const override {
4073  return !matcher_.MatchAndExplain(x, listener);
4074  }
4075 
4076  void DescribeTo(::std::ostream* os) const override {
4077  matcher_.DescribeNegationTo(os);
4078  }
4079 
4080  void DescribeNegationTo(::std::ostream* os) const override {
4081  matcher_.DescribeTo(os);
4082  }
4083 
4084  private:
4085  const Matcher<T> matcher_;
4086 };
4087 
4088 // Implements the Not(m) matcher, which matches a value that doesn't
4089 // match matcher m.
4090 template <typename InnerMatcher>
4091 class NotMatcher {
4092  public:
4093  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
4094 
4095  // This template type conversion operator allows Not(m) to be used
4096  // to match any type m can match.
4097  template <typename T>
4098  operator Matcher<T>() const {
4099  return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
4100  }
4101 
4102  private:
4103  InnerMatcher matcher_;
4104 };
4105 
4106 // Implements the AllOf(m1, m2) matcher for a particular argument type
4107 // T. We do not nest it inside the BothOfMatcher class template, as
4108 // that will prevent different instantiations of BothOfMatcher from
4109 // sharing the same BothOfMatcherImpl<T> class.
4110 template <typename T>
4111 class AllOfMatcherImpl : public MatcherInterface<const T&> {
4112  public:
4113  explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
4114  : matchers_(std::move(matchers)) {}
4115 
4116  void DescribeTo(::std::ostream* os) const override {
4117  *os << "(";
4118  for (size_t i = 0; i < matchers_.size(); ++i) {
4119  if (i != 0) *os << ") and (";
4120  matchers_[i].DescribeTo(os);
4121  }
4122  *os << ")";
4123  }
4124 
4125  void DescribeNegationTo(::std::ostream* os) const override {
4126  *os << "(";
4127  for (size_t i = 0; i < matchers_.size(); ++i) {
4128  if (i != 0) *os << ") or (";
4129  matchers_[i].DescribeNegationTo(os);
4130  }
4131  *os << ")";
4132  }
4133 
4134  bool MatchAndExplain(const T& x,
4135  MatchResultListener* listener) const override {
4136  // If either matcher1_ or matcher2_ doesn't match x, we only need
4137  // to explain why one of them fails.
4138  std::string all_match_result;
4139 
4140  for (size_t i = 0; i < matchers_.size(); ++i) {
4141  StringMatchResultListener slistener;
4142  if (matchers_[i].MatchAndExplain(x, &slistener)) {
4143  if (all_match_result.empty()) {
4144  all_match_result = slistener.str();
4145  } else {
4146  std::string result = slistener.str();
4147  if (!result.empty()) {
4148  all_match_result += ", and ";
4149  all_match_result += result;
4150  }
4151  }
4152  } else {
4153  *listener << slistener.str();
4154  return false;
4155  }
4156  }
4157 
4158  // Otherwise we need to explain why *both* of them match.
4159  *listener << all_match_result;
4160  return true;
4161  }
4162 
4163  private:
4164  const std::vector<Matcher<T> > matchers_;
4165 };
4166 
4167 // VariadicMatcher is used for the variadic implementation of
4168 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
4169 // CombiningMatcher<T> is used to recursively combine the provided matchers
4170 // (of type Args...).
4171 template <template <typename T> class CombiningMatcher, typename... Args>
4172 class VariadicMatcher {
4173  public:
4174  VariadicMatcher(const Args&... matchers) // NOLINT
4175  : matchers_(matchers...) {
4176  static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
4177  }
4178 
4179  VariadicMatcher(const VariadicMatcher&) = default;
4180  VariadicMatcher& operator=(const VariadicMatcher&) = delete;
4181 
4182  // This template type conversion operator allows an
4183  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
4184  // all of the provided matchers (Matcher1, Matcher2, ...) can match.
4185  template <typename T>
4186  operator Matcher<T>() const {
4187  std::vector<Matcher<T> > values;
4188  CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
4189  return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
4190  }
4191 
4192  private:
4193  template <typename T, size_t I>
4194  void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
4195  std::integral_constant<size_t, I>) const {
4196  values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
4197  CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
4198  }
4199 
4200  template <typename T>
4201  void CreateVariadicMatcher(
4202  std::vector<Matcher<T> >*,
4203  std::integral_constant<size_t, sizeof...(Args)>) const {}
4204 
4205  std::tuple<Args...> matchers_;
4206 };
4207 
4208 template <typename... Args>
4209 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
4210 
4211 // Implements the AnyOf(m1, m2) matcher for a particular argument type
4212 // T. We do not nest it inside the AnyOfMatcher class template, as
4213 // that will prevent different instantiations of AnyOfMatcher from
4214 // sharing the same EitherOfMatcherImpl<T> class.
4215 template <typename T>
4216 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
4217  public:
4218  explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
4219  : matchers_(std::move(matchers)) {}
4220 
4221  void DescribeTo(::std::ostream* os) const override {
4222  *os << "(";
4223  for (size_t i = 0; i < matchers_.size(); ++i) {
4224  if (i != 0) *os << ") or (";
4225  matchers_[i].DescribeTo(os);
4226  }
4227  *os << ")";
4228  }
4229 
4230  void DescribeNegationTo(::std::ostream* os) const override {
4231  *os << "(";
4232  for (size_t i = 0; i < matchers_.size(); ++i) {
4233  if (i != 0) *os << ") and (";
4234  matchers_[i].DescribeNegationTo(os);
4235  }
4236  *os << ")";
4237  }
4238 
4239  bool MatchAndExplain(const T& x,
4240  MatchResultListener* listener) const override {
4241  std::string no_match_result;
4242 
4243  // If either matcher1_ or matcher2_ matches x, we just need to
4244  // explain why *one* of them matches.
4245  for (size_t i = 0; i < matchers_.size(); ++i) {
4246  StringMatchResultListener slistener;
4247  if (matchers_[i].MatchAndExplain(x, &slistener)) {
4248  *listener << slistener.str();
4249  return true;
4250  } else {
4251  if (no_match_result.empty()) {
4252  no_match_result = slistener.str();
4253  } else {
4254  std::string result = slistener.str();
4255  if (!result.empty()) {
4256  no_match_result += ", and ";
4257  no_match_result += result;
4258  }
4259  }
4260  }
4261  }
4262 
4263  // Otherwise we need to explain why *both* of them fail.
4264  *listener << no_match_result;
4265  return false;
4266  }
4267 
4268  private:
4269  const std::vector<Matcher<T> > matchers_;
4270 };
4271 
4272 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
4273 template <typename... Args>
4274 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
4275 
4276 // Wrapper for implementation of Any/AllOfArray().
4277 template <template <class> class MatcherImpl, typename T>
4278 class SomeOfArrayMatcher {
4279  public:
4280  // Constructs the matcher from a sequence of element values or
4281  // element matchers.
4282  template <typename Iter>
4283  SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
4284 
4285  template <typename U>
4286  operator Matcher<U>() const { // NOLINT
4287  using RawU = typename std::decay<U>::type;
4288  std::vector<Matcher<RawU>> matchers;
4289  for (const auto& matcher : matchers_) {
4290  matchers.push_back(MatcherCast<RawU>(matcher));
4291  }
4292  return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
4293  }
4294 
4295  private:
4296  const ::std::vector<T> matchers_;
4297 };
4298 
4299 template <typename T>
4300 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
4301 
4302 template <typename T>
4303 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
4304 
4305 // Used for implementing Truly(pred), which turns a predicate into a
4306 // matcher.
4307 template <typename Predicate>
4308 class TrulyMatcher {
4309  public:
4310  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
4311 
4312  // This method template allows Truly(pred) to be used as a matcher
4313  // for type T where T is the argument type of predicate 'pred'. The
4314  // argument is passed by reference as the predicate may be
4315  // interested in the address of the argument.
4316  template <typename T>
4317  bool MatchAndExplain(T& x, // NOLINT
4318  MatchResultListener* listener) const {
4319  // Without the if-statement, MSVC sometimes warns about converting
4320  // a value to bool (warning 4800).
4321  //
4322  // We cannot write 'return !!predicate_(x);' as that doesn't work
4323  // when predicate_(x) returns a class convertible to bool but
4324  // having no operator!().
4325  if (predicate_(x))
4326  return true;
4327  *listener << "didn't satisfy the given predicate";
4328  return false;
4329  }
4330 
4331  void DescribeTo(::std::ostream* os) const {
4332  *os << "satisfies the given predicate";
4333  }
4334 
4335  void DescribeNegationTo(::std::ostream* os) const {
4336  *os << "doesn't satisfy the given predicate";
4337  }
4338 
4339  private:
4340  Predicate predicate_;
4341 };
4342 
4343 // Used for implementing Matches(matcher), which turns a matcher into
4344 // a predicate.
4345 template <typename M>
4346 class MatcherAsPredicate {
4347  public:
4348  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
4349 
4350  // This template operator() allows Matches(m) to be used as a
4351  // predicate on type T where m is a matcher on type T.
4352  //
4353  // The argument x is passed by reference instead of by value, as
4354  // some matcher may be interested in its address (e.g. as in
4355  // Matches(Ref(n))(x)).
4356  template <typename T>
4357  bool operator()(const T& x) const {
4358  // We let matcher_ commit to a particular type here instead of
4359  // when the MatcherAsPredicate object was constructed. This
4360  // allows us to write Matches(m) where m is a polymorphic matcher
4361  // (e.g. Eq(5)).
4362  //
4363  // If we write Matcher<T>(matcher_).Matches(x) here, it won't
4364  // compile when matcher_ has type Matcher<const T&>; if we write
4365  // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
4366  // when matcher_ has type Matcher<T>; if we just write
4367  // matcher_.Matches(x), it won't compile when matcher_ is
4368  // polymorphic, e.g. Eq(5).
4369  //
4370  // MatcherCast<const T&>() is necessary for making the code work
4371  // in all of the above situations.
4372  return MatcherCast<const T&>(matcher_).Matches(x);
4373  }
4374 
4375  private:
4376  M matcher_;
4377 };
4378 
4379 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
4380 // argument M must be a type that can be converted to a matcher.
4381 template <typename M>
4382 class PredicateFormatterFromMatcher {
4383  public:
4384  explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
4385 
4386  // This template () operator allows a PredicateFormatterFromMatcher
4387  // object to act as a predicate-formatter suitable for using with
4388  // Google Test's EXPECT_PRED_FORMAT1() macro.
4389  template <typename T>
4390  AssertionResult operator()(const char* value_text, const T& x) const {
4391  // We convert matcher_ to a Matcher<const T&> *now* instead of
4392  // when the PredicateFormatterFromMatcher object was constructed,
4393  // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
4394  // know which type to instantiate it to until we actually see the
4395  // type of x here.
4396  //
4397  // We write SafeMatcherCast<const T&>(matcher_) instead of
4398  // Matcher<const T&>(matcher_), as the latter won't compile when
4399  // matcher_ has type Matcher<T> (e.g. An<int>()).
4400  // We don't write MatcherCast<const T&> either, as that allows
4401  // potentially unsafe downcasting of the matcher argument.
4402  const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
4403 
4404  // The expected path here is that the matcher should match (i.e. that most
4405  // tests pass) so optimize for this case.
4406  if (matcher.Matches(x)) {
4407  return AssertionSuccess();
4408  }
4409 
4410  ::std::stringstream ss;
4411  ss << "Value of: " << value_text << "\n"
4412  << "Expected: ";
4413  matcher.DescribeTo(&ss);
4414 
4415  // Rerun the matcher to "PrintAndExplain" the failure.
4416  StringMatchResultListener listener;
4417  if (MatchPrintAndExplain(x, matcher, &listener)) {
4418  ss << "\n The matcher failed on the initial attempt; but passed when "
4419  "rerun to generate the explanation.";
4420  }
4421  ss << "\n Actual: " << listener.str();
4422  return AssertionFailure() << ss.str();
4423  }
4424 
4425  private:
4426  const M matcher_;
4427 };
4428 
4429 // A helper function for converting a matcher to a predicate-formatter
4430 // without the user needing to explicitly write the type. This is
4431 // used for implementing ASSERT_THAT() and EXPECT_THAT().
4432 // Implementation detail: 'matcher' is received by-value to force decaying.
4433 template <typename M>
4434 inline PredicateFormatterFromMatcher<M>
4435 MakePredicateFormatterFromMatcher(M matcher) {
4436  return PredicateFormatterFromMatcher<M>(std::move(matcher));
4437 }
4438 
4439 // Implements the polymorphic IsNan() matcher, which matches any floating type
4440 // value that is Nan.
4441 class IsNanMatcher {
4442  public:
4443  template <typename FloatType>
4444  bool MatchAndExplain(const FloatType& f,
4445  MatchResultListener* /* listener */) const {
4446  return (::std::isnan)(f);
4447  }
4448 
4449  void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
4450  void DescribeNegationTo(::std::ostream* os) const {
4451  *os << "isn't NaN";
4452  }
4453 };
4454 
4455 // Implements the polymorphic floating point equality matcher, which matches
4456 // two float values using ULP-based approximation or, optionally, a
4457 // user-specified epsilon. The template is meant to be instantiated with
4458 // FloatType being either float or double.
4459 template <typename FloatType>
4460 class FloatingEqMatcher {
4461  public:
4462  // Constructor for FloatingEqMatcher.
4463  // The matcher's input will be compared with expected. The matcher treats two
4464  // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
4465  // equality comparisons between NANs will always return false. We specify a
4466  // negative max_abs_error_ term to indicate that ULP-based approximation will
4467  // be used for comparison.
4468  FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
4469  expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
4470  }
4471 
4472  // Constructor that supports a user-specified max_abs_error that will be used
4473  // for comparison instead of ULP-based approximation. The max absolute
4474  // should be non-negative.
4475  FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
4476  FloatType max_abs_error)
4477  : expected_(expected),
4478  nan_eq_nan_(nan_eq_nan),
4479  max_abs_error_(max_abs_error) {
4480  GTEST_CHECK_(max_abs_error >= 0)
4481  << ", where max_abs_error is" << max_abs_error;
4482  }
4483 
4484  // Implements floating point equality matcher as a Matcher<T>.
4485  template <typename T>
4486  class Impl : public MatcherInterface<T> {
4487  public:
4488  Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
4489  : expected_(expected),
4490  nan_eq_nan_(nan_eq_nan),
4491  max_abs_error_(max_abs_error) {}
4492 
4493  bool MatchAndExplain(T value,
4494  MatchResultListener* listener) const override {
4495  const FloatingPoint<FloatType> actual(value), expected(expected_);
4496 
4497  // Compares NaNs first, if nan_eq_nan_ is true.
4498  if (actual.is_nan() || expected.is_nan()) {
4499  if (actual.is_nan() && expected.is_nan()) {
4500  return nan_eq_nan_;
4501  }
4502  // One is nan; the other is not nan.
4503  return false;
4504  }
4505  if (HasMaxAbsError()) {
4506  // We perform an equality check so that inf will match inf, regardless
4507  // of error bounds. If the result of value - expected_ would result in
4508  // overflow or if either value is inf, the default result is infinity,
4509  // which should only match if max_abs_error_ is also infinity.
4510  if (value == expected_) {
4511  return true;
4512  }
4513 
4514  const FloatType diff = value - expected_;
4515  if (::std::fabs(diff) <= max_abs_error_) {
4516  return true;
4517  }
4518 
4519  if (listener->IsInterested()) {
4520  *listener << "which is " << diff << " from " << expected_;
4521  }
4522  return false;
4523  } else {
4524  return actual.AlmostEquals(expected);
4525  }
4526  }
4527 
4528  void DescribeTo(::std::ostream* os) const override {
4529  // os->precision() returns the previously set precision, which we
4530  // store to restore the ostream to its original configuration
4531  // after outputting.
4532  const ::std::streamsize old_precision = os->precision(
4533  ::std::numeric_limits<FloatType>::digits10 + 2);
4534  if (FloatingPoint<FloatType>(expected_).is_nan()) {
4535  if (nan_eq_nan_) {
4536  *os << "is NaN";
4537  } else {
4538  *os << "never matches";
4539  }
4540  } else {
4541  *os << "is approximately " << expected_;
4542  if (HasMaxAbsError()) {
4543  *os << " (absolute error <= " << max_abs_error_ << ")";
4544  }
4545  }
4546  os->precision(old_precision);
4547  }
4548 
4549  void DescribeNegationTo(::std::ostream* os) const override {
4550  // As before, get original precision.
4551  const ::std::streamsize old_precision = os->precision(
4552  ::std::numeric_limits<FloatType>::digits10 + 2);
4553  if (FloatingPoint<FloatType>(expected_).is_nan()) {
4554  if (nan_eq_nan_) {
4555  *os << "isn't NaN";
4556  } else {
4557  *os << "is anything";
4558  }
4559  } else {
4560  *os << "isn't approximately " << expected_;
4561  if (HasMaxAbsError()) {
4562  *os << " (absolute error > " << max_abs_error_ << ")";
4563  }
4564  }
4565  // Restore original precision.
4566  os->precision(old_precision);
4567  }
4568 
4569  private:
4570  bool HasMaxAbsError() const {
4571  return max_abs_error_ >= 0;
4572  }
4573 
4574  const FloatType expected_;
4575  const bool nan_eq_nan_;
4576  // max_abs_error will be used for value comparison when >= 0.
4577  const FloatType max_abs_error_;
4578  };
4579 
4580  // The following 3 type conversion operators allow FloatEq(expected) and
4581  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
4582  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
4583  operator Matcher<FloatType>() const {
4584  return MakeMatcher(
4585  new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
4586  }
4587 
4588  operator Matcher<const FloatType&>() const {
4589  return MakeMatcher(
4590  new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4591  }
4592 
4593  operator Matcher<FloatType&>() const {
4594  return MakeMatcher(
4595  new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4596  }
4597 
4598  private:
4599  const FloatType expected_;
4600  const bool nan_eq_nan_;
4601  // max_abs_error will be used for value comparison when >= 0.
4602  const FloatType max_abs_error_;
4603 };
4604 
4605 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
4606 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
4607 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
4608 // against y. The former implements "Eq", the latter "Near". At present, there
4609 // is no version that compares NaNs as equal.
4610 template <typename FloatType>
4611 class FloatingEq2Matcher {
4612  public:
4613  FloatingEq2Matcher() { Init(-1, false); }
4614 
4615  explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
4616 
4617  explicit FloatingEq2Matcher(FloatType max_abs_error) {
4618  Init(max_abs_error, false);
4619  }
4620 
4621  FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
4622  Init(max_abs_error, nan_eq_nan);
4623  }
4624 
4625  template <typename T1, typename T2>
4626  operator Matcher<::std::tuple<T1, T2>>() const {
4627  return MakeMatcher(
4628  new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
4629  }
4630  template <typename T1, typename T2>
4631  operator Matcher<const ::std::tuple<T1, T2>&>() const {
4632  return MakeMatcher(
4633  new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
4634  }
4635 
4636  private:
4637  static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
4638  return os << "an almost-equal pair";
4639  }
4640 
4641  template <typename Tuple>
4642  class Impl : public MatcherInterface<Tuple> {
4643  public:
4644  Impl(FloatType max_abs_error, bool nan_eq_nan) :
4645  max_abs_error_(max_abs_error),
4646  nan_eq_nan_(nan_eq_nan) {}
4647 
4648  bool MatchAndExplain(Tuple args,
4649  MatchResultListener* listener) const override {
4650  if (max_abs_error_ == -1) {
4651  FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
4652  return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4653  ::std::get<1>(args), listener);
4654  } else {
4655  FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
4656  max_abs_error_);
4657  return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4658  ::std::get<1>(args), listener);
4659  }
4660  }
4661  void DescribeTo(::std::ostream* os) const override {
4662  *os << "are " << GetDesc;
4663  }
4664  void DescribeNegationTo(::std::ostream* os) const override {
4665  *os << "aren't " << GetDesc;
4666  }
4667 
4668  private:
4669  FloatType max_abs_error_;
4670  const bool nan_eq_nan_;
4671  };
4672 
4673  void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
4674  max_abs_error_ = max_abs_error_val;
4675  nan_eq_nan_ = nan_eq_nan_val;
4676  }
4677  FloatType max_abs_error_;
4678  bool nan_eq_nan_;
4679 };
4680 
4681 // Implements the Pointee(m) matcher for matching a pointer whose
4682 // pointee matches matcher m. The pointer can be either raw or smart.
4683 template <typename InnerMatcher>
4684 class PointeeMatcher {
4685  public:
4686  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4687 
4688  // This type conversion operator template allows Pointee(m) to be
4689  // used as a matcher for any pointer type whose pointee type is
4690  // compatible with the inner matcher, where type Pointer can be
4691  // either a raw pointer or a smart pointer.
4692  //
4693  // The reason we do this instead of relying on
4694  // MakePolymorphicMatcher() is that the latter is not flexible
4695  // enough for implementing the DescribeTo() method of Pointee().
4696  template <typename Pointer>
4697  operator Matcher<Pointer>() const {
4698  return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
4699  }
4700 
4701  private:
4702  // The monomorphic implementation that works for a particular pointer type.
4703  template <typename Pointer>
4704  class Impl : public MatcherInterface<Pointer> {
4705  public:
4706  using Pointee =
4707  typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4708  Pointer)>::element_type;
4709 
4710  explicit Impl(const InnerMatcher& matcher)
4711  : matcher_(MatcherCast<const Pointee&>(matcher)) {}
4712 
4713  void DescribeTo(::std::ostream* os) const override {
4714  *os << "points to a value that ";
4715  matcher_.DescribeTo(os);
4716  }
4717 
4718  void DescribeNegationTo(::std::ostream* os) const override {
4719  *os << "does not point to a value that ";
4720  matcher_.DescribeTo(os);
4721  }
4722 
4723  bool MatchAndExplain(Pointer pointer,
4724  MatchResultListener* listener) const override {
4725  if (GetRawPointer(pointer) == nullptr) return false;
4726 
4727  *listener << "which points to ";
4728  return MatchPrintAndExplain(*pointer, matcher_, listener);
4729  }
4730 
4731  private:
4732  const Matcher<const Pointee&> matcher_;
4733  };
4734 
4735  const InnerMatcher matcher_;
4736 };
4737 
4738 // Implements the Pointer(m) matcher
4739 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
4740 // m. The pointer can be either raw or smart, and will match `m` against the
4741 // raw pointer.
4742 template <typename InnerMatcher>
4743 class PointerMatcher {
4744  public:
4745  explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4746 
4747  // This type conversion operator template allows Pointer(m) to be
4748  // used as a matcher for any pointer type whose pointer type is
4749  // compatible with the inner matcher, where type PointerType can be
4750  // either a raw pointer or a smart pointer.
4751  //
4752  // The reason we do this instead of relying on
4753  // MakePolymorphicMatcher() is that the latter is not flexible
4754  // enough for implementing the DescribeTo() method of Pointer().
4755  template <typename PointerType>
4756  operator Matcher<PointerType>() const { // NOLINT
4757  return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
4758  }
4759 
4760  private:
4761  // The monomorphic implementation that works for a particular pointer type.
4762  template <typename PointerType>
4763  class Impl : public MatcherInterface<PointerType> {
4764  public:
4765  using Pointer =
4766  const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4767  PointerType)>::element_type*;
4768 
4769  explicit Impl(const InnerMatcher& matcher)
4770  : matcher_(MatcherCast<Pointer>(matcher)) {}
4771 
4772  void DescribeTo(::std::ostream* os) const override {
4773  *os << "is a pointer that ";
4774  matcher_.DescribeTo(os);
4775  }
4776 
4777  void DescribeNegationTo(::std::ostream* os) const override {
4778  *os << "is not a pointer that ";
4779  matcher_.DescribeTo(os);
4780  }
4781 
4782  bool MatchAndExplain(PointerType pointer,
4783  MatchResultListener* listener) const override {
4784  *listener << "which is a pointer that ";
4785  Pointer p = GetRawPointer(pointer);
4786  return MatchPrintAndExplain(p, matcher_, listener);
4787  }
4788 
4789  private:
4790  Matcher<Pointer> matcher_;
4791  };
4792 
4793  const InnerMatcher matcher_;
4794 };
4795 
4796 #if GTEST_HAS_RTTI
4797 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
4798 // reference that matches inner_matcher when dynamic_cast<T> is applied.
4799 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4800 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4801 // If To is a reference and the cast fails, this matcher returns false
4802 // immediately.
4803 template <typename To>
4804 class WhenDynamicCastToMatcherBase {
4805  public:
4806  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
4807  : matcher_(matcher) {}
4808 
4809  void DescribeTo(::std::ostream* os) const {
4810  GetCastTypeDescription(os);
4811  matcher_.DescribeTo(os);
4812  }
4813 
4814  void DescribeNegationTo(::std::ostream* os) const {
4815  GetCastTypeDescription(os);
4816  matcher_.DescribeNegationTo(os);
4817  }
4818 
4819  protected:
4820  const Matcher<To> matcher_;
4821 
4822  static std::string GetToName() {
4823  return GetTypeName<To>();
4824  }
4825 
4826  private:
4827  static void GetCastTypeDescription(::std::ostream* os) {
4828  *os << "when dynamic_cast to " << GetToName() << ", ";
4829  }
4830 };
4831 
4832 // Primary template.
4833 // To is a pointer. Cast and forward the result.
4834 template <typename To>
4835 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
4836  public:
4837  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
4838  : WhenDynamicCastToMatcherBase<To>(matcher) {}
4839 
4840  template <typename From>
4841  bool MatchAndExplain(From from, MatchResultListener* listener) const {
4842  To to = dynamic_cast<To>(from);
4843  return MatchPrintAndExplain(to, this->matcher_, listener);
4844  }
4845 };
4846 
4847 // Specialize for references.
4848 // In this case we return false if the dynamic_cast fails.
4849 template <typename To>
4850 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
4851  public:
4852  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
4853  : WhenDynamicCastToMatcherBase<To&>(matcher) {}
4854 
4855  template <typename From>
4856  bool MatchAndExplain(From& from, MatchResultListener* listener) const {
4857  // We don't want an std::bad_cast here, so do the cast with pointers.
4858  To* to = dynamic_cast<To*>(&from);
4859  if (to == nullptr) {
4860  *listener << "which cannot be dynamic_cast to " << this->GetToName();
4861  return false;
4862  }
4863  return MatchPrintAndExplain(*to, this->matcher_, listener);
4864  }
4865 };
4866 #endif // GTEST_HAS_RTTI
4867 
4868 // Implements the Field() matcher for matching a field (i.e. member
4869 // variable) of an object.
4870 template <typename Class, typename FieldType>
4871 class FieldMatcher {
4872  public:
4873  FieldMatcher(FieldType Class::*field,
4874  const Matcher<const FieldType&>& matcher)
4875  : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
4876 
4877  FieldMatcher(const std::string& field_name, FieldType Class::*field,
4878  const Matcher<const FieldType&>& matcher)
4879  : field_(field),
4880  matcher_(matcher),
4881  whose_field_("whose field `" + field_name + "` ") {}
4882 
4883  void DescribeTo(::std::ostream* os) const {
4884  *os << "is an object " << whose_field_;
4885  matcher_.DescribeTo(os);
4886  }
4887 
4888  void DescribeNegationTo(::std::ostream* os) const {
4889  *os << "is an object " << whose_field_;
4890  matcher_.DescribeNegationTo(os);
4891  }
4892 
4893  template <typename T>
4894  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
4895  // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
4896  // a compiler bug, and can now be removed.
4897  return MatchAndExplainImpl(
4898  typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4899  value, listener);
4900  }
4901 
4902  private:
4903  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4904  const Class& obj,
4905  MatchResultListener* listener) const {
4906  *listener << whose_field_ << "is ";
4907  return MatchPrintAndExplain(obj.*field_, matcher_, listener);
4908  }
4909 
4910  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4911  MatchResultListener* listener) const {
4912  if (p == nullptr) return false;
4913 
4914  *listener << "which points to an object ";
4915  // Since *p has a field, it must be a class/struct/union type and
4916  // thus cannot be a pointer. Therefore we pass false_type() as
4917  // the first argument.
4918  return MatchAndExplainImpl(std::false_type(), *p, listener);
4919  }
4920 
4921  const FieldType Class::*field_;
4922  const Matcher<const FieldType&> matcher_;
4923 
4924  // Contains either "whose given field " if the name of the field is unknown
4925  // or "whose field `name_of_field` " if the name is known.
4926  const std::string whose_field_;
4927 };
4928 
4929 // Implements the Property() matcher for matching a property
4930 // (i.e. return value of a getter method) of an object.
4931 //
4932 // Property is a const-qualified member function of Class returning
4933 // PropertyType.
4934 template <typename Class, typename PropertyType, typename Property>
4935 class PropertyMatcher {
4936  public:
4937  typedef const PropertyType& RefToConstProperty;
4938 
4939  PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
4940  : property_(property),
4941  matcher_(matcher),
4942  whose_property_("whose given property ") {}
4943 
4944  PropertyMatcher(const std::string& property_name, Property property,
4945  const Matcher<RefToConstProperty>& matcher)
4946  : property_(property),
4947  matcher_(matcher),
4948  whose_property_("whose property `" + property_name + "` ") {}
4949 
4950  void DescribeTo(::std::ostream* os) const {
4951  *os << "is an object " << whose_property_;
4952  matcher_.DescribeTo(os);
4953  }
4954 
4955  void DescribeNegationTo(::std::ostream* os) const {
4956  *os << "is an object " << whose_property_;
4957  matcher_.DescribeNegationTo(os);
4958  }
4959 
4960  template <typename T>
4961  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
4962  return MatchAndExplainImpl(
4963  typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4964  value, listener);
4965  }
4966 
4967  private:
4968  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4969  const Class& obj,
4970  MatchResultListener* listener) const {
4971  *listener << whose_property_ << "is ";
4972  // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
4973  // which takes a non-const reference as argument.
4974  RefToConstProperty result = (obj.*property_)();
4975  return MatchPrintAndExplain(result, matcher_, listener);
4976  }
4977 
4978  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4979  MatchResultListener* listener) const {
4980  if (p == nullptr) return false;
4981 
4982  *listener << "which points to an object ";
4983  // Since *p has a property method, it must be a class/struct/union
4984  // type and thus cannot be a pointer. Therefore we pass
4985  // false_type() as the first argument.
4986  return MatchAndExplainImpl(std::false_type(), *p, listener);
4987  }
4988 
4989  Property property_;
4990  const Matcher<RefToConstProperty> matcher_;
4991 
4992  // Contains either "whose given property " if the name of the property is
4993  // unknown or "whose property `name_of_property` " if the name is known.
4994  const std::string whose_property_;
4995 };
4996 
4997 // Type traits specifying various features of different functors for ResultOf.
4998 // The default template specifies features for functor objects.
4999 template <typename Functor>
5000 struct CallableTraits {
5001  typedef Functor StorageType;
5002 
5003  static void CheckIsValid(Functor /* functor */) {}
5004 
5005  template <typename T>
5006  static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
5007  return f(arg);
5008  }
5009 };
5010 
5011 // Specialization for function pointers.
5012 template <typename ArgType, typename ResType>
5013 struct CallableTraits<ResType(*)(ArgType)> {
5014  typedef ResType ResultType;
5015  typedef ResType(*StorageType)(ArgType);
5016 
5017  static void CheckIsValid(ResType(*f)(ArgType)) {
5018  GTEST_CHECK_(f != nullptr)
5019  << "NULL function pointer is passed into ResultOf().";
5020  }
5021  template <typename T>
5022  static ResType Invoke(ResType(*f)(ArgType), T arg) {
5023  return (*f)(arg);
5024  }
5025 };
5026 
5027 // Implements the ResultOf() matcher for matching a return value of a
5028 // unary function of an object.
5029 template <typename Callable, typename InnerMatcher>
5030 class ResultOfMatcher {
5031  public:
5032  ResultOfMatcher(Callable callable, InnerMatcher matcher)
5033  : callable_(std::move(callable)), matcher_(std::move(matcher)) {
5034  CallableTraits<Callable>::CheckIsValid(callable_);
5035  }
5036 
5037  template <typename T>
5038  operator Matcher<T>() const {
5039  return Matcher<T>(new Impl<const T&>(callable_, matcher_));
5040  }
5041 
5042  private:
5043  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
5044 
5045  template <typename T>
5046  class Impl : public MatcherInterface<T> {
5047  using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
5048  std::declval<CallableStorageType>(), std::declval<T>()));
5049 
5050  public:
5051  template <typename M>
5052  Impl(const CallableStorageType& callable, const M& matcher)
5053  : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
5054 
5055  void DescribeTo(::std::ostream* os) const override {
5056  *os << "is mapped by the given callable to a value that ";
5057  matcher_.DescribeTo(os);
5058  }
5059 
5060  void DescribeNegationTo(::std::ostream* os) const override {
5061  *os << "is mapped by the given callable to a value that ";
5062  matcher_.DescribeNegationTo(os);
5063  }
5064 
5065  bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
5066  *listener << "which is mapped by the given callable to ";
5067  // Cannot pass the return value directly to MatchPrintAndExplain, which
5068  // takes a non-const reference as argument.
5069  // Also, specifying template argument explicitly is needed because T could
5070  // be a non-const reference (e.g. Matcher<Uncopyable&>).
5071  ResultType result =
5072  CallableTraits<Callable>::template Invoke<T>(callable_, obj);
5073  return MatchPrintAndExplain(result, matcher_, listener);
5074  }
5075 
5076  private:
5077  // Functors often define operator() as non-const method even though
5078  // they are actually stateless. But we need to use them even when
5079  // 'this' is a const pointer. It's the user's responsibility not to
5080  // use stateful callables with ResultOf(), which doesn't guarantee
5081  // how many times the callable will be invoked.
5082  mutable CallableStorageType callable_;
5083  const Matcher<ResultType> matcher_;
5084  }; // class Impl
5085 
5086  const CallableStorageType callable_;
5087  const InnerMatcher matcher_;
5088 };
5089 
5090 // Implements a matcher that checks the size of an STL-style container.
5091 template <typename SizeMatcher>
5092 class SizeIsMatcher {
5093  public:
5094  explicit SizeIsMatcher(const SizeMatcher& size_matcher)
5095  : size_matcher_(size_matcher) {
5096  }
5097 
5098  template <typename Container>
5099  operator Matcher<Container>() const {
5100  return Matcher<Container>(new Impl<const Container&>(size_matcher_));
5101  }
5102 
5103  template <typename Container>
5104  class Impl : public MatcherInterface<Container> {
5105  public:
5106  using SizeType = decltype(std::declval<Container>().size());
5107  explicit Impl(const SizeMatcher& size_matcher)
5108  : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
5109 
5110  void DescribeTo(::std::ostream* os) const override {
5111  *os << "size ";
5112  size_matcher_.DescribeTo(os);
5113  }
5114  void DescribeNegationTo(::std::ostream* os) const override {
5115  *os << "size ";
5116  size_matcher_.DescribeNegationTo(os);
5117  }
5118 
5119  bool MatchAndExplain(Container container,
5120  MatchResultListener* listener) const override {
5121  SizeType size = container.size();
5122  StringMatchResultListener size_listener;
5123  const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
5124  *listener
5125  << "whose size " << size << (result ? " matches" : " doesn't match");
5126  PrintIfNotEmpty(size_listener.str(), listener->stream());
5127  return result;
5128  }
5129 
5130  private:
5131  const Matcher<SizeType> size_matcher_;
5132  };
5133 
5134  private:
5135  const SizeMatcher size_matcher_;
5136 };
5137 
5138 // Implements a matcher that checks the begin()..end() distance of an STL-style
5139 // container.
5140 template <typename DistanceMatcher>
5141 class BeginEndDistanceIsMatcher {
5142  public:
5143  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
5144  : distance_matcher_(distance_matcher) {}
5145 
5146  template <typename Container>
5147  operator Matcher<Container>() const {
5148  return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
5149  }
5150 
5151  template <typename Container>
5152  class Impl : public MatcherInterface<Container> {
5153  public:
5154  typedef internal::StlContainerView<
5155  GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
5156  typedef typename std::iterator_traits<
5157  typename ContainerView::type::const_iterator>::difference_type
5158  DistanceType;
5159  explicit Impl(const DistanceMatcher& distance_matcher)
5160  : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
5161 
5162  void DescribeTo(::std::ostream* os) const override {
5163  *os << "distance between begin() and end() ";
5164  distance_matcher_.DescribeTo(os);
5165  }
5166  void DescribeNegationTo(::std::ostream* os) const override {
5167  *os << "distance between begin() and end() ";
5168  distance_matcher_.DescribeNegationTo(os);
5169  }
5170 
5171  bool MatchAndExplain(Container container,
5172  MatchResultListener* listener) const override {
5173  using std::begin;
5174  using std::end;
5175  DistanceType distance = std::distance(begin(container), end(container));
5176  StringMatchResultListener distance_listener;
5177  const bool result =
5178  distance_matcher_.MatchAndExplain(distance, &distance_listener);
5179  *listener << "whose distance between begin() and end() " << distance
5180  << (result ? " matches" : " doesn't match");
5181  PrintIfNotEmpty(distance_listener.str(), listener->stream());
5182  return result;
5183  }
5184 
5185  private:
5186  const Matcher<DistanceType> distance_matcher_;
5187  };
5188 
5189  private:
5190  const DistanceMatcher distance_matcher_;
5191 };
5192 
5193 // Implements an equality matcher for any STL-style container whose elements
5194 // support ==. This matcher is like Eq(), but its failure explanations provide
5195 // more detailed information that is useful when the container is used as a set.
5196 // The failure message reports elements that are in one of the operands but not
5197 // the other. The failure messages do not report duplicate or out-of-order
5198 // elements in the containers (which don't properly matter to sets, but can
5199 // occur if the containers are vectors or lists, for example).
5200 //
5201 // Uses the container's const_iterator, value_type, operator ==,
5202 // begin(), and end().
5203 template <typename Container>
5204 class ContainerEqMatcher {
5205  public:
5206  typedef internal::StlContainerView<Container> View;
5207  typedef typename View::type StlContainer;
5208  typedef typename View::const_reference StlContainerReference;
5209 
5210  static_assert(!std::is_const<Container>::value,
5211  "Container type must not be const");
5212  static_assert(!std::is_reference<Container>::value,
5213  "Container type must not be a reference");
5214 
5215  // We make a copy of expected in case the elements in it are modified
5216  // after this matcher is created.
5217  explicit ContainerEqMatcher(const Container& expected)
5218  : expected_(View::Copy(expected)) {}
5219 
5220  void DescribeTo(::std::ostream* os) const {
5221  *os << "equals ";
5222  UniversalPrint(expected_, os);
5223  }
5224  void DescribeNegationTo(::std::ostream* os) const {
5225  *os << "does not equal ";
5226  UniversalPrint(expected_, os);
5227  }
5228 
5229  template <typename LhsContainer>
5230  bool MatchAndExplain(const LhsContainer& lhs,
5231  MatchResultListener* listener) const {
5232  typedef internal::StlContainerView<
5233  typename std::remove_const<LhsContainer>::type>
5234  LhsView;
5235  typedef typename LhsView::type LhsStlContainer;
5236  StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5237  if (lhs_stl_container == expected_)
5238  return true;
5239 
5240  ::std::ostream* const os = listener->stream();
5241  if (os != nullptr) {
5242  // Something is different. Check for extra values first.
5243  bool printed_header = false;
5244  for (typename LhsStlContainer::const_iterator it =
5245  lhs_stl_container.begin();
5246  it != lhs_stl_container.end(); ++it) {
5247  if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
5248  expected_.end()) {
5249  if (printed_header) {
5250  *os << ", ";
5251  } else {
5252  *os << "which has these unexpected elements: ";
5253  printed_header = true;
5254  }
5255  UniversalPrint(*it, os);
5256  }
5257  }
5258 
5259  // Now check for missing values.
5260  bool printed_header2 = false;
5261  for (typename StlContainer::const_iterator it = expected_.begin();
5262  it != expected_.end(); ++it) {
5263  if (internal::ArrayAwareFind(
5264  lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
5265  lhs_stl_container.end()) {
5266  if (printed_header2) {
5267  *os << ", ";
5268  } else {
5269  *os << (printed_header ? ",\nand" : "which")
5270  << " doesn't have these expected elements: ";
5271  printed_header2 = true;
5272  }
5273  UniversalPrint(*it, os);
5274  }
5275  }
5276  }
5277 
5278  return false;
5279  }
5280 
5281  private:
5282  const StlContainer expected_;
5283 };
5284 
5285 // A comparator functor that uses the < operator to compare two values.
5286 struct LessComparator {
5287  template <typename T, typename U>
5288  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
5289 };
5290 
5291 // Implements WhenSortedBy(comparator, container_matcher).
5292 template <typename Comparator, typename ContainerMatcher>
5293 class WhenSortedByMatcher {
5294  public:
5295  WhenSortedByMatcher(const Comparator& comparator,
5296  const ContainerMatcher& matcher)
5297  : comparator_(comparator), matcher_(matcher) {}
5298 
5299  template <typename LhsContainer>
5300  operator Matcher<LhsContainer>() const {
5301  return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
5302  }
5303 
5304  template <typename LhsContainer>
5305  class Impl : public MatcherInterface<LhsContainer> {
5306  public:
5307  typedef internal::StlContainerView<
5308  GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5309  typedef typename LhsView::type LhsStlContainer;
5310  typedef typename LhsView::const_reference LhsStlContainerReference;
5311  // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
5312  // so that we can match associative containers.
5313  typedef typename RemoveConstFromKey<
5314  typename LhsStlContainer::value_type>::type LhsValue;
5315 
5316  Impl(const Comparator& comparator, const ContainerMatcher& matcher)
5317  : comparator_(comparator), matcher_(matcher) {}
5318 
5319  void DescribeTo(::std::ostream* os) const override {
5320  *os << "(when sorted) ";
5321  matcher_.DescribeTo(os);
5322  }
5323 
5324  void DescribeNegationTo(::std::ostream* os) const override {
5325  *os << "(when sorted) ";
5326  matcher_.DescribeNegationTo(os);
5327  }
5328 
5329  bool MatchAndExplain(LhsContainer lhs,
5330  MatchResultListener* listener) const override {
5331  LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5332  ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
5333  lhs_stl_container.end());
5334  ::std::sort(
5335  sorted_container.begin(), sorted_container.end(), comparator_);
5336 
5337  if (!listener->IsInterested()) {
5338  // If the listener is not interested, we do not need to
5339  // construct the inner explanation.
5340  return matcher_.Matches(sorted_container);
5341  }
5342 
5343  *listener << "which is ";
5344  UniversalPrint(sorted_container, listener->stream());
5345  *listener << " when sorted";
5346 
5347  StringMatchResultListener inner_listener;
5348  const bool match = matcher_.MatchAndExplain(sorted_container,
5349  &inner_listener);
5350  PrintIfNotEmpty(inner_listener.str(), listener->stream());
5351  return match;
5352  }
5353 
5354  private:
5355  const Comparator comparator_;
5356  const Matcher<const ::std::vector<LhsValue>&> matcher_;
5357 
5358  GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
5359  };
5360 
5361  private:
5362  const Comparator comparator_;
5363  const ContainerMatcher matcher_;
5364 };
5365 
5366 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
5367 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
5368 // T2&> >, where T1 and T2 are the types of elements in the LHS
5369 // container and the RHS container respectively.
5370 template <typename TupleMatcher, typename RhsContainer>
5371 class PointwiseMatcher {
5372  GTEST_COMPILE_ASSERT_(
5373  !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
5374  use_UnorderedPointwise_with_hash_tables);
5375 
5376  public:
5377  typedef internal::StlContainerView<RhsContainer> RhsView;
5378  typedef typename RhsView::type RhsStlContainer;
5379  typedef typename RhsStlContainer::value_type RhsValue;
5380 
5381  static_assert(!std::is_const<RhsContainer>::value,
5382  "RhsContainer type must not be const");
5383  static_assert(!std::is_reference<RhsContainer>::value,
5384  "RhsContainer type must not be a reference");
5385 
5386  // Like ContainerEq, we make a copy of rhs in case the elements in
5387  // it are modified after this matcher is created.
5388  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
5389  : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
5390 
5391  template <typename LhsContainer>
5392  operator Matcher<LhsContainer>() const {
5393  GTEST_COMPILE_ASSERT_(
5394  !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
5395  use_UnorderedPointwise_with_hash_tables);
5396 
5397  return Matcher<LhsContainer>(
5398  new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
5399  }
5400 
5401  template <typename LhsContainer>
5402  class Impl : public MatcherInterface<LhsContainer> {
5403  public:
5404  typedef internal::StlContainerView<
5405  GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5406  typedef typename LhsView::type LhsStlContainer;
5407  typedef typename LhsView::const_reference LhsStlContainerReference;
5408  typedef typename LhsStlContainer::value_type LhsValue;
5409  // We pass the LHS value and the RHS value to the inner matcher by
5410  // reference, as they may be expensive to copy. We must use tuple
5411  // instead of pair here, as a pair cannot hold references (C++ 98,
5412  // 20.2.2 [lib.pairs]).
5413  typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
5414 
5415  Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
5416  // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
5417  : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
5418  rhs_(rhs) {}
5419 
5420  void DescribeTo(::std::ostream* os) const override {
5421  *os << "contains " << rhs_.size()
5422  << " values, where each value and its corresponding value in ";
5423  UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
5424  *os << " ";
5425  mono_tuple_matcher_.DescribeTo(os);
5426  }
5427  void DescribeNegationTo(::std::ostream* os) const override {
5428  *os << "doesn't contain exactly " << rhs_.size()
5429  << " values, or contains a value x at some index i"
5430  << " where x and the i-th value of ";
5431  UniversalPrint(rhs_, os);
5432  *os << " ";
5433  mono_tuple_matcher_.DescribeNegationTo(os);
5434  }
5435 
5436  bool MatchAndExplain(LhsContainer lhs,
5437  MatchResultListener* listener) const override {
5438  LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5439  const size_t actual_size = lhs_stl_container.size();
5440  if (actual_size != rhs_.size()) {
5441  *listener << "which contains " << actual_size << " values";
5442  return false;
5443  }
5444 
5445  typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
5446  typename RhsStlContainer::const_iterator right = rhs_.begin();
5447  for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
5448  if (listener->IsInterested()) {
5449  StringMatchResultListener inner_listener;
5450  // Create InnerMatcherArg as a temporarily object to avoid it outlives
5451  // *left and *right. Dereference or the conversion to `const T&` may
5452  // return temp objects, e.g for vector<bool>.
5453  if (!mono_tuple_matcher_.MatchAndExplain(
5454  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5455  ImplicitCast_<const RhsValue&>(*right)),
5456  &inner_listener)) {
5457  *listener << "where the value pair (";
5458  UniversalPrint(*left, listener->stream());
5459  *listener << ", ";
5460  UniversalPrint(*right, listener->stream());
5461  *listener << ") at index #" << i << " don't match";
5462  PrintIfNotEmpty(inner_listener.str(), listener->stream());
5463  return false;
5464  }
5465  } else {
5466  if (!mono_tuple_matcher_.Matches(
5467  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5468  ImplicitCast_<const RhsValue&>(*right))))
5469  return false;
5470  }
5471  }
5472 
5473  return true;
5474  }
5475 
5476  private:
5477  const Matcher<InnerMatcherArg> mono_tuple_matcher_;
5478  const RhsStlContainer rhs_;
5479  };
5480 
5481  private:
5482  const TupleMatcher tuple_matcher_;
5483  const RhsStlContainer rhs_;
5484 };
5485 
5486 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
5487 template <typename Container>
5488 class QuantifierMatcherImpl : public MatcherInterface<Container> {
5489  public:
5490  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
5491  typedef StlContainerView<RawContainer> View;
5492  typedef typename View::type StlContainer;
5493  typedef typename View::const_reference StlContainerReference;
5494  typedef typename StlContainer::value_type Element;
5495 
5496  template <typename InnerMatcher>
5497  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
5498  : inner_matcher_(
5499  testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
5500 
5501  // Checks whether:
5502  // * All elements in the container match, if all_elements_should_match.
5503  // * Any element in the container matches, if !all_elements_should_match.
5504  bool MatchAndExplainImpl(bool all_elements_should_match,
5505  Container container,
5506  MatchResultListener* listener) const {
5507  StlContainerReference stl_container = View::ConstReference(container);
5508  size_t i = 0;
5509  for (typename StlContainer::const_iterator it = stl_container.begin();
5510  it != stl_container.end(); ++it, ++i) {
5511  StringMatchResultListener inner_listener;
5512  const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
5513 
5514  if (matches != all_elements_should_match) {
5515  *listener << "whose element #" << i
5516  << (matches ? " matches" : " doesn't match");
5517  PrintIfNotEmpty(inner_listener.str(), listener->stream());
5518  return !all_elements_should_match;
5519  }
5520  }
5521  return all_elements_should_match;
5522  }
5523 
5524  protected:
5525  const Matcher<const Element&> inner_matcher_;
5526 };
5527 
5528 // Implements Contains(element_matcher) for the given argument type Container.
5529 // Symmetric to EachMatcherImpl.
5530 template <typename Container>
5531 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
5532  public:
5533  template <typename InnerMatcher>
5534  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
5535  : QuantifierMatcherImpl<Container>(inner_matcher) {}
5536 
5537  // Describes what this matcher does.
5538  void DescribeTo(::std::ostream* os) const override {
5539  *os << "contains at least one element that ";
5540  this->inner_matcher_.DescribeTo(os);
5541  }
5542 
5543  void DescribeNegationTo(::std::ostream* os) const override {
5544  *os << "doesn't contain any element that ";
5545  this->inner_matcher_.DescribeTo(os);
5546  }
5547 
5548  bool MatchAndExplain(Container container,
5549  MatchResultListener* listener) const override {
5550  return this->MatchAndExplainImpl(false, container, listener);
5551  }
5552 };
5553 
5554 // Implements Each(element_matcher) for the given argument type Container.
5555 // Symmetric to ContainsMatcherImpl.
5556 template <typename Container>
5557 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
5558  public:
5559  template <typename InnerMatcher>
5560  explicit EachMatcherImpl(InnerMatcher inner_matcher)
5561  : QuantifierMatcherImpl<Container>(inner_matcher) {}
5562 
5563  // Describes what this matcher does.
5564  void DescribeTo(::std::ostream* os) const override {
5565  *os << "only contains elements that ";
5566  this->inner_matcher_.DescribeTo(os);
5567  }
5568 
5569  void DescribeNegationTo(::std::ostream* os) const override {
5570  *os << "contains some element that ";
5571  this->inner_matcher_.DescribeNegationTo(os);
5572  }
5573 
5574  bool MatchAndExplain(Container container,
5575  MatchResultListener* listener) const override {
5576  return this->MatchAndExplainImpl(true, container, listener);
5577  }
5578 };
5579 
5580 // Implements polymorphic Contains(element_matcher).
5581 template <typename M>
5582 class ContainsMatcher {
5583  public:
5584  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
5585 
5586  template <typename Container>
5587  operator Matcher<Container>() const {
5588  return Matcher<Container>(
5589  new ContainsMatcherImpl<const Container&>(inner_matcher_));
5590  }
5591 
5592  private:
5593  const M inner_matcher_;
5594 };
5595 
5596 // Implements polymorphic Each(element_matcher).
5597 template <typename M>
5598 class EachMatcher {
5599  public:
5600  explicit EachMatcher(M m) : inner_matcher_(m) {}
5601 
5602  template <typename Container>
5603  operator Matcher<Container>() const {
5604  return Matcher<Container>(
5605  new EachMatcherImpl<const Container&>(inner_matcher_));
5606  }
5607 
5608  private:
5609  const M inner_matcher_;
5610 };
5611 
5612 struct Rank1 {};
5613 struct Rank0 : Rank1 {};
5614 
5615 namespace pair_getters {
5616 using std::get;
5617 template <typename T>
5618 auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
5619  return get<0>(x);
5620 }
5621 template <typename T>
5622 auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
5623  return x.first;
5624 }
5625 
5626 template <typename T>
5627 auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
5628  return get<1>(x);
5629 }
5630 template <typename T>
5631 auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
5632  return x.second;
5633 }
5634 } // namespace pair_getters
5635 
5636 // Implements Key(inner_matcher) for the given argument pair type.
5637 // Key(inner_matcher) matches an std::pair whose 'first' field matches
5638 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
5639 // std::map that contains at least one element whose key is >= 5.
5640 template <typename PairType>
5641 class KeyMatcherImpl : public MatcherInterface<PairType> {
5642  public:
5643  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5644  typedef typename RawPairType::first_type KeyType;
5645 
5646  template <typename InnerMatcher>
5647  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
5648  : inner_matcher_(
5649  testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
5650  }
5651 
5652  // Returns true if and only if 'key_value.first' (the key) matches the inner
5653  // matcher.
5654  bool MatchAndExplain(PairType key_value,
5655  MatchResultListener* listener) const override {
5656  StringMatchResultListener inner_listener;
5657  const bool match = inner_matcher_.MatchAndExplain(
5658  pair_getters::First(key_value, Rank0()), &inner_listener);
5659  const std::string explanation = inner_listener.str();
5660  if (explanation != "") {
5661  *listener << "whose first field is a value " << explanation;
5662  }
5663  return match;
5664  }
5665 
5666  // Describes what this matcher does.
5667  void DescribeTo(::std::ostream* os) const override {
5668  *os << "has a key that ";
5669  inner_matcher_.DescribeTo(os);
5670  }
5671 
5672  // Describes what the negation of this matcher does.
5673  void DescribeNegationTo(::std::ostream* os) const override {
5674  *os << "doesn't have a key that ";
5675  inner_matcher_.DescribeTo(os);
5676  }
5677 
5678  private:
5679  const Matcher<const KeyType&> inner_matcher_;
5680 };
5681 
5682 // Implements polymorphic Key(matcher_for_key).
5683 template <typename M>
5684 class KeyMatcher {
5685  public:
5686  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
5687 
5688  template <typename PairType>
5689  operator Matcher<PairType>() const {
5690  return Matcher<PairType>(
5691  new KeyMatcherImpl<const PairType&>(matcher_for_key_));
5692  }
5693 
5694  private:
5695  const M matcher_for_key_;
5696 };
5697 
5698 // Implements polymorphic Address(matcher_for_address).
5699 template <typename InnerMatcher>
5700 class AddressMatcher {
5701  public:
5702  explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
5703 
5704  template <typename Type>
5705  operator Matcher<Type>() const { // NOLINT
5706  return Matcher<Type>(new Impl<const Type&>(matcher_));
5707  }
5708 
5709  private:
5710  // The monomorphic implementation that works for a particular object type.
5711  template <typename Type>
5712  class Impl : public MatcherInterface<Type> {
5713  public:
5714  using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
5715  explicit Impl(const InnerMatcher& matcher)
5716  : matcher_(MatcherCast<Address>(matcher)) {}
5717 
5718  void DescribeTo(::std::ostream* os) const override {
5719  *os << "has address that ";
5720  matcher_.DescribeTo(os);
5721  }
5722 
5723  void DescribeNegationTo(::std::ostream* os) const override {
5724  *os << "does not have address that ";
5725  matcher_.DescribeTo(os);
5726  }
5727 
5728  bool MatchAndExplain(Type object,
5729  MatchResultListener* listener) const override {
5730  *listener << "which has address ";
5731  Address address = std::addressof(object);
5732  return MatchPrintAndExplain(address, matcher_, listener);
5733  }
5734 
5735  private:
5736  const Matcher<Address> matcher_;
5737  };
5738  const InnerMatcher matcher_;
5739 };
5740 
5741 // Implements Pair(first_matcher, second_matcher) for the given argument pair
5742 // type with its two matchers. See Pair() function below.
5743 template <typename PairType>
5744 class PairMatcherImpl : public MatcherInterface<PairType> {
5745  public:
5746  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5747  typedef typename RawPairType::first_type FirstType;
5748  typedef typename RawPairType::second_type SecondType;
5749 
5750  template <typename FirstMatcher, typename SecondMatcher>
5751  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
5752  : first_matcher_(
5753  testing::SafeMatcherCast<const FirstType&>(first_matcher)),
5754  second_matcher_(
5755  testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
5756  }
5757 
5758  // Describes what this matcher does.
5759  void DescribeTo(::std::ostream* os) const override {
5760  *os << "has a first field that ";
5761  first_matcher_.DescribeTo(os);
5762  *os << ", and has a second field that ";
5763  second_matcher_.DescribeTo(os);
5764  }
5765 
5766  // Describes what the negation of this matcher does.
5767  void DescribeNegationTo(::std::ostream* os) const override {
5768  *os << "has a first field that ";
5769  first_matcher_.DescribeNegationTo(os);
5770  *os << ", or has a second field that ";
5771  second_matcher_.DescribeNegationTo(os);
5772  }
5773 
5774  // Returns true if and only if 'a_pair.first' matches first_matcher and
5775  // 'a_pair.second' matches second_matcher.
5776  bool MatchAndExplain(PairType a_pair,
5777  MatchResultListener* listener) const override {
5778  if (!listener->IsInterested()) {
5779  // If the listener is not interested, we don't need to construct the
5780  // explanation.
5781  return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
5782  second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
5783  }
5784  StringMatchResultListener first_inner_listener;
5785  if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
5786  &first_inner_listener)) {
5787  *listener << "whose first field does not match";
5788  PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
5789  return false;
5790  }
5791  StringMatchResultListener second_inner_listener;
5792  if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
5793  &second_inner_listener)) {
5794  *listener << "whose second field does not match";
5795  PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
5796  return false;
5797  }
5798  ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
5799  listener);
5800  return true;
5801  }
5802 
5803  private:
5804  void ExplainSuccess(const std::string& first_explanation,
5805  const std::string& second_explanation,
5806  MatchResultListener* listener) const {
5807  *listener << "whose both fields match";
5808  if (first_explanation != "") {
5809  *listener << ", where the first field is a value " << first_explanation;
5810  }
5811  if (second_explanation != "") {
5812  *listener << ", ";
5813  if (first_explanation != "") {
5814  *listener << "and ";
5815  } else {
5816  *listener << "where ";
5817  }
5818  *listener << "the second field is a value " << second_explanation;
5819  }
5820  }
5821 
5822  const Matcher<const FirstType&> first_matcher_;
5823  const Matcher<const SecondType&> second_matcher_;
5824 };
5825 
5826 // Implements polymorphic Pair(first_matcher, second_matcher).
5827 template <typename FirstMatcher, typename SecondMatcher>
5828 class PairMatcher {
5829  public:
5830  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
5831  : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
5832 
5833  template <typename PairType>
5834  operator Matcher<PairType> () const {
5835  return Matcher<PairType>(
5836  new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
5837  }
5838 
5839  private:
5840  const FirstMatcher first_matcher_;
5841  const SecondMatcher second_matcher_;
5842 };
5843 
5844 template <typename T, size_t... I>
5845 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
5846  -> decltype(std::tie(get<I>(t)...)) {
5847  static_assert(std::tuple_size<T>::value == sizeof...(I),
5848  "Number of arguments doesn't match the number of fields.");
5849  return std::tie(get<I>(t)...);
5850 }
5851 
5852 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
5853 template <typename T>
5854 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
5855  const auto& [a] = t;
5856  return std::tie(a);
5857 }
5858 template <typename T>
5859 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
5860  const auto& [a, b] = t;
5861  return std::tie(a, b);
5862 }
5863 template <typename T>
5864 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
5865  const auto& [a, b, c] = t;
5866  return std::tie(a, b, c);
5867 }
5868 template <typename T>
5869 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
5870  const auto& [a, b, c, d] = t;
5871  return std::tie(a, b, c, d);
5872 }
5873 template <typename T>
5874 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
5875  const auto& [a, b, c, d, e] = t;
5876  return std::tie(a, b, c, d, e);
5877 }
5878 template <typename T>
5879 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
5880  const auto& [a, b, c, d, e, f] = t;
5881  return std::tie(a, b, c, d, e, f);
5882 }
5883 template <typename T>
5884 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
5885  const auto& [a, b, c, d, e, f, g] = t;
5886  return std::tie(a, b, c, d, e, f, g);
5887 }
5888 template <typename T>
5889 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
5890  const auto& [a, b, c, d, e, f, g, h] = t;
5891  return std::tie(a, b, c, d, e, f, g, h);
5892 }
5893 template <typename T>
5894 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
5895  const auto& [a, b, c, d, e, f, g, h, i] = t;
5896  return std::tie(a, b, c, d, e, f, g, h, i);
5897 }
5898 template <typename T>
5899 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
5900  const auto& [a, b, c, d, e, f, g, h, i, j] = t;
5901  return std::tie(a, b, c, d, e, f, g, h, i, j);
5902 }
5903 template <typename T>
5904 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
5905  const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
5906  return std::tie(a, b, c, d, e, f, g, h, i, j, k);
5907 }
5908 template <typename T>
5909 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
5910  const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
5911  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
5912 }
5913 template <typename T>
5914 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
5915  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
5916  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
5917 }
5918 template <typename T>
5919 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
5920  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
5921  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
5922 }
5923 template <typename T>
5924 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
5925  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
5926  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
5927 }
5928 template <typename T>
5929 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
5930  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
5931  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
5932 }
5933 #endif // defined(__cpp_structured_bindings)
5934 
5935 template <size_t I, typename T>
5936 auto UnpackStruct(const T& t)
5937  -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
5938  return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
5939 }
5940 
5941 // Helper function to do comma folding in C++11.
5942 // The array ensures left-to-right order of evaluation.
5943 // Usage: VariadicExpand({expr...});
5944 template <typename T, size_t N>
5945 void VariadicExpand(const T (&)[N]) {}
5946 
5947 template <typename Struct, typename StructSize>
5948 class FieldsAreMatcherImpl;
5949 
5950 template <typename Struct, size_t... I>
5951 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
5952  : public MatcherInterface<Struct> {
5953  using UnpackedType =
5954  decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
5955  using MatchersType = std::tuple<
5956  Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
5957 
5958  public:
5959  template <typename Inner>
5960  explicit FieldsAreMatcherImpl(const Inner& matchers)
5961  : matchers_(testing::SafeMatcherCast<
5962  const typename std::tuple_element<I, UnpackedType>::type&>(
5963  std::get<I>(matchers))...) {}
5964 
5965  void DescribeTo(::std::ostream* os) const override {
5966  const char* separator = "";
5967  VariadicExpand(
5968  {(*os << separator << "has field #" << I << " that ",
5969  std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
5970  }
5971 
5972  void DescribeNegationTo(::std::ostream* os) const override {
5973  const char* separator = "";
5974  VariadicExpand({(*os << separator << "has field #" << I << " that ",
5975  std::get<I>(matchers_).DescribeNegationTo(os),
5976  separator = ", or ")...});
5977  }
5978 
5979  bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
5980  return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
5981  }
5982 
5983  private:
5984  bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
5985  if (!listener->IsInterested()) {
5986  // If the listener is not interested, we don't need to construct the
5987  // explanation.
5988  bool good = true;
5989  VariadicExpand({good = good && std::get<I>(matchers_).Matches(
5990  std::get<I>(tuple))...});
5991  return good;
5992  }
5993 
5994  size_t failed_pos = ~size_t{};
5995 
5996  std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
5997 
5998  VariadicExpand(
5999  {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
6000  std::get<I>(tuple), &inner_listener[I])
6001  ? failed_pos = I
6002  : 0 ...});
6003  if (failed_pos != ~size_t{}) {
6004  *listener << "whose field #" << failed_pos << " does not match";
6005  PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
6006  return false;
6007  }
6008 
6009  *listener << "whose all elements match";
6010  const char* separator = ", where";
6011  for (size_t index = 0; index < sizeof...(I); ++index) {
6012  const std::string str = inner_listener[index].str();
6013  if (!str.empty()) {
6014  *listener << separator << " field #" << index << " is a value " << str;
6015  separator = ", and";
6016  }
6017  }
6018 
6019  return true;
6020  }
6021 
6022  MatchersType matchers_;
6023 };
6024 
6025 template <typename... Inner>
6026 class FieldsAreMatcher {
6027  public:
6028  explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
6029 
6030  template <typename Struct>
6031  operator Matcher<Struct>() const { // NOLINT
6032  return Matcher<Struct>(
6033  new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
6034  matchers_));
6035  }
6036 
6037  private:
6038  std::tuple<Inner...> matchers_;
6039 };
6040 
6041 // Implements ElementsAre() and ElementsAreArray().
6042 template <typename Container>
6043 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
6044  public:
6045  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6046  typedef internal::StlContainerView<RawContainer> View;
6047  typedef typename View::type StlContainer;
6048  typedef typename View::const_reference StlContainerReference;
6049  typedef typename StlContainer::value_type Element;
6050 
6051  // Constructs the matcher from a sequence of element values or
6052  // element matchers.
6053  template <typename InputIter>
6054  ElementsAreMatcherImpl(InputIter first, InputIter last) {
6055  while (first != last) {
6056  matchers_.push_back(MatcherCast<const Element&>(*first++));
6057  }
6058  }
6059 
6060  // Describes what this matcher does.
6061  void DescribeTo(::std::ostream* os) const override {
6062  if (count() == 0) {
6063  *os << "is empty";
6064  } else if (count() == 1) {
6065  *os << "has 1 element that ";
6066  matchers_[0].DescribeTo(os);
6067  } else {
6068  *os << "has " << Elements(count()) << " where\n";
6069  for (size_t i = 0; i != count(); ++i) {
6070  *os << "element #" << i << " ";
6071  matchers_[i].DescribeTo(os);
6072  if (i + 1 < count()) {
6073  *os << ",\n";
6074  }
6075  }
6076  }
6077  }
6078 
6079  // Describes what the negation of this matcher does.
6080  void DescribeNegationTo(::std::ostream* os) const override {
6081  if (count() == 0) {
6082  *os << "isn't empty";
6083  return;
6084  }
6085 
6086  *os << "doesn't have " << Elements(count()) << ", or\n";
6087  for (size_t i = 0; i != count(); ++i) {
6088  *os << "element #" << i << " ";
6089  matchers_[i].DescribeNegationTo(os);
6090  if (i + 1 < count()) {
6091  *os << ", or\n";
6092  }
6093  }
6094  }
6095 
6096  bool MatchAndExplain(Container container,
6097  MatchResultListener* listener) const override {
6098  // To work with stream-like "containers", we must only walk
6099  // through the elements in one pass.
6100 
6101  const bool listener_interested = listener->IsInterested();
6102 
6103  // explanations[i] is the explanation of the element at index i.
6104  ::std::vector<std::string> explanations(count());
6105  StlContainerReference stl_container = View::ConstReference(container);
6106  typename StlContainer::const_iterator it = stl_container.begin();
6107  size_t exam_pos = 0;
6108  bool mismatch_found = false; // Have we found a mismatched element yet?
6109 
6110  // Go through the elements and matchers in pairs, until we reach
6111  // the end of either the elements or the matchers, or until we find a
6112  // mismatch.
6113  for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
6114  bool match; // Does the current element match the current matcher?
6115  if (listener_interested) {
6116  StringMatchResultListener s;
6117  match = matchers_[exam_pos].MatchAndExplain(*it, &s);
6118  explanations[exam_pos] = s.str();
6119  } else {
6120  match = matchers_[exam_pos].Matches(*it);
6121  }
6122 
6123  if (!match) {
6124  mismatch_found = true;
6125  break;
6126  }
6127  }
6128  // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
6129 
6130  // Find how many elements the actual container has. We avoid
6131  // calling size() s.t. this code works for stream-like "containers"
6132  // that don't define size().
6133  size_t actual_count = exam_pos;
6134  for (; it != stl_container.end(); ++it) {
6135  ++actual_count;
6136  }
6137 
6138  if (actual_count != count()) {
6139  // The element count doesn't match. If the container is empty,
6140  // there's no need to explain anything as Google Mock already
6141  // prints the empty container. Otherwise we just need to show
6142  // how many elements there actually are.
6143  if (listener_interested && (actual_count != 0)) {
6144  *listener << "which has " << Elements(actual_count);
6145  }
6146  return false;
6147  }
6148 
6149  if (mismatch_found) {
6150  // The element count matches, but the exam_pos-th element doesn't match.
6151  if (listener_interested) {
6152  *listener << "whose element #" << exam_pos << " doesn't match";
6153  PrintIfNotEmpty(explanations[exam_pos], listener->stream());
6154  }
6155  return false;
6156  }
6157 
6158  // Every element matches its expectation. We need to explain why
6159  // (the obvious ones can be skipped).
6160  if (listener_interested) {
6161  bool reason_printed = false;
6162  for (size_t i = 0; i != count(); ++i) {
6163  const std::string& s = explanations[i];
6164  if (!s.empty()) {
6165  if (reason_printed) {
6166  *listener << ",\nand ";
6167  }
6168  *listener << "whose element #" << i << " matches, " << s;
6169  reason_printed = true;
6170  }
6171  }
6172  }
6173  return true;
6174  }
6175 
6176  private:
6177  static Message Elements(size_t count) {
6178  return Message() << count << (count == 1 ? " element" : " elements");
6179  }
6180 
6181  size_t count() const { return matchers_.size(); }
6182 
6183  ::std::vector<Matcher<const Element&> > matchers_;
6184 };
6185 
6186 // Connectivity matrix of (elements X matchers), in element-major order.
6187 // Initially, there are no edges.
6188 // Use NextGraph() to iterate over all possible edge configurations.
6189 // Use Randomize() to generate a random edge configuration.
6190 class GTEST_API_ MatchMatrix {
6191  public:
6192  MatchMatrix(size_t num_elements, size_t num_matchers)
6193  : num_elements_(num_elements),
6194  num_matchers_(num_matchers),
6195  matched_(num_elements_* num_matchers_, 0) {
6196  }
6197 
6198  size_t LhsSize() const { return num_elements_; }
6199  size_t RhsSize() const { return num_matchers_; }
6200  bool HasEdge(size_t ilhs, size_t irhs) const {
6201  return matched_[SpaceIndex(ilhs, irhs)] == 1;
6202  }
6203  void SetEdge(size_t ilhs, size_t irhs, bool b) {
6204  matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
6205  }
6206 
6207  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
6208  // adds 1 to that number; returns false if incrementing the graph left it
6209  // empty.
6210  bool NextGraph();
6211 
6212  void Randomize();
6213 
6214  std::string DebugString() const;
6215 
6216  private:
6217  size_t SpaceIndex(size_t ilhs, size_t irhs) const {
6218  return ilhs * num_matchers_ + irhs;
6219  }
6220 
6221  size_t num_elements_;
6222  size_t num_matchers_;
6223 
6224  // Each element is a char interpreted as bool. They are stored as a
6225  // flattened array in lhs-major order, use 'SpaceIndex()' to translate
6226  // a (ilhs, irhs) matrix coordinate into an offset.
6227  ::std::vector<char> matched_;
6228 };
6229 
6230 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
6231 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
6232 
6233 // Returns a maximum bipartite matching for the specified graph 'g'.
6234 // The matching is represented as a vector of {element, matcher} pairs.
6235 GTEST_API_ ElementMatcherPairs
6236 FindMaxBipartiteMatching(const MatchMatrix& g);
6237 
6238 struct UnorderedMatcherRequire {
6239  enum Flags {
6240  Superset = 1 << 0,
6241  Subset = 1 << 1,
6242  ExactMatch = Superset | Subset,
6243  };
6244 };
6245 
6246 // Untyped base class for implementing UnorderedElementsAre. By
6247 // putting logic that's not specific to the element type here, we
6248 // reduce binary bloat and increase compilation speed.
6249 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
6250  protected:
6251  explicit UnorderedElementsAreMatcherImplBase(
6252  UnorderedMatcherRequire::Flags matcher_flags)
6253  : match_flags_(matcher_flags) {}
6254 
6255  // A vector of matcher describers, one for each element matcher.
6256  // Does not own the describers (and thus can be used only when the
6257  // element matchers are alive).
6258  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
6259 
6260  // Describes this UnorderedElementsAre matcher.
6261  void DescribeToImpl(::std::ostream* os) const;
6262 
6263  // Describes the negation of this UnorderedElementsAre matcher.
6264  void DescribeNegationToImpl(::std::ostream* os) const;
6265 
6266  bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
6267  const MatchMatrix& matrix,
6268  MatchResultListener* listener) const;
6269 
6270  bool FindPairing(const MatchMatrix& matrix,
6271  MatchResultListener* listener) const;
6272 
6273  MatcherDescriberVec& matcher_describers() {
6274  return matcher_describers_;
6275  }
6276 
6277  static Message Elements(size_t n) {
6278  return Message() << n << " element" << (n == 1 ? "" : "s");
6279  }
6280 
6281  UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
6282 
6283  private:
6284  UnorderedMatcherRequire::Flags match_flags_;
6285  MatcherDescriberVec matcher_describers_;
6286 };
6287 
6288 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
6289 // IsSupersetOf.
6290 template <typename Container>
6291 class UnorderedElementsAreMatcherImpl
6292  : public MatcherInterface<Container>,
6293  public UnorderedElementsAreMatcherImplBase {
6294  public:
6295  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6296  typedef internal::StlContainerView<RawContainer> View;
6297  typedef typename View::type StlContainer;
6298  typedef typename View::const_reference StlContainerReference;
6299  typedef typename StlContainer::const_iterator StlContainerConstIterator;
6300  typedef typename StlContainer::value_type Element;
6301 
6302  template <typename InputIter>
6303  UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
6304  InputIter first, InputIter last)
6305  : UnorderedElementsAreMatcherImplBase(matcher_flags) {
6306  for (; first != last; ++first) {
6307  matchers_.push_back(MatcherCast<const Element&>(*first));
6308  }
6309  for (const auto& m : matchers_) {
6310  matcher_describers().push_back(m.GetDescriber());
6311  }
6312  }
6313 
6314  // Describes what this matcher does.
6315  void DescribeTo(::std::ostream* os) const override {
6316  return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
6317  }
6318 
6319  // Describes what the negation of this matcher does.
6320  void DescribeNegationTo(::std::ostream* os) const override {
6321  return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
6322  }
6323 
6324  bool MatchAndExplain(Container container,
6325  MatchResultListener* listener) const override {
6326  StlContainerReference stl_container = View::ConstReference(container);
6327  ::std::vector<std::string> element_printouts;
6328  MatchMatrix matrix =
6329  AnalyzeElements(stl_container.begin(), stl_container.end(),
6330  &element_printouts, listener);
6331 
6332  if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
6333  return true;
6334  }
6335 
6336  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
6337  if (matrix.LhsSize() != matrix.RhsSize()) {
6338  // The element count doesn't match. If the container is empty,
6339  // there's no need to explain anything as Google Mock already
6340  // prints the empty container. Otherwise we just need to show
6341  // how many elements there actually are.
6342  if (matrix.LhsSize() != 0 && listener->IsInterested()) {
6343  *listener << "which has " << Elements(matrix.LhsSize());
6344  }
6345  return false;
6346  }
6347  }
6348 
6349  return VerifyMatchMatrix(element_printouts, matrix, listener) &&
6350  FindPairing(matrix, listener);
6351  }
6352 
6353  private:
6354  template <typename ElementIter>
6355  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
6356  ::std::vector<std::string>* element_printouts,
6357  MatchResultListener* listener) const {
6358  element_printouts->clear();
6359  ::std::vector<char> did_match;
6360  size_t num_elements = 0;
6361  DummyMatchResultListener dummy;
6362  for (; elem_first != elem_last; ++num_elements, ++elem_first) {
6363  if (listener->IsInterested()) {
6364  element_printouts->push_back(PrintToString(*elem_first));
6365  }
6366  for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6367  did_match.push_back(
6368  matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
6369  }
6370  }
6371 
6372  MatchMatrix matrix(num_elements, matchers_.size());
6373  ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
6374  for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
6375  for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6376  matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
6377  }
6378  }
6379  return matrix;
6380  }
6381 
6382  ::std::vector<Matcher<const Element&> > matchers_;
6383 };
6384 
6385 // Functor for use in TransformTuple.
6386 // Performs MatcherCast<Target> on an input argument of any type.
6387 template <typename Target>
6388 struct CastAndAppendTransform {
6389  template <typename Arg>
6390  Matcher<Target> operator()(const Arg& a) const {
6391  return MatcherCast<Target>(a);
6392  }
6393 };
6394 
6395 // Implements UnorderedElementsAre.
6396 template <typename MatcherTuple>
6397 class UnorderedElementsAreMatcher {
6398  public:
6399  explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
6400  : matchers_(args) {}
6401 
6402  template <typename Container>
6403  operator Matcher<Container>() const {
6404  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6405  typedef typename internal::StlContainerView<RawContainer>::type View;
6406  typedef typename View::value_type Element;
6407  typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6408  MatcherVec matchers;
6409  matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6410  TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6411  ::std::back_inserter(matchers));
6412  return Matcher<Container>(
6413  new UnorderedElementsAreMatcherImpl<const Container&>(
6414  UnorderedMatcherRequire::ExactMatch, matchers.begin(),
6415  matchers.end()));
6416  }
6417 
6418  private:
6419  const MatcherTuple matchers_;
6420 };
6421 
6422 // Implements ElementsAre.
6423 template <typename MatcherTuple>
6424 class ElementsAreMatcher {
6425  public:
6426  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
6427 
6428  template <typename Container>
6429  operator Matcher<Container>() const {
6430  GTEST_COMPILE_ASSERT_(
6431  !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
6432  ::std::tuple_size<MatcherTuple>::value < 2,
6433  use_UnorderedElementsAre_with_hash_tables);
6434 
6435  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6436  typedef typename internal::StlContainerView<RawContainer>::type View;
6437  typedef typename View::value_type Element;
6438  typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6439  MatcherVec matchers;
6440  matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6441  TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6442  ::std::back_inserter(matchers));
6443  return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6444  matchers.begin(), matchers.end()));
6445  }
6446 
6447  private:
6448  const MatcherTuple matchers_;
6449 };
6450 
6451 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
6452 template <typename T>
6453 class UnorderedElementsAreArrayMatcher {
6454  public:
6455  template <typename Iter>
6456  UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
6457  Iter first, Iter last)
6458  : match_flags_(match_flags), matchers_(first, last) {}
6459 
6460  template <typename Container>
6461  operator Matcher<Container>() const {
6462  return Matcher<Container>(
6463  new UnorderedElementsAreMatcherImpl<const Container&>(
6464  match_flags_, matchers_.begin(), matchers_.end()));
6465  }
6466 
6467  private:
6468  UnorderedMatcherRequire::Flags match_flags_;
6469  ::std::vector<T> matchers_;
6470 };
6471 
6472 // Implements ElementsAreArray().
6473 template <typename T>
6474 class ElementsAreArrayMatcher {
6475  public:
6476  template <typename Iter>
6477  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
6478 
6479  template <typename Container>
6480  operator Matcher<Container>() const {
6481  GTEST_COMPILE_ASSERT_(
6482  !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
6483  use_UnorderedElementsAreArray_with_hash_tables);
6484 
6485  return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6486  matchers_.begin(), matchers_.end()));
6487  }
6488 
6489  private:
6490  const ::std::vector<T> matchers_;
6491 };
6492 
6493 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
6494 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
6495 // second) is a polymorphic matcher that matches a value x if and only if
6496 // tm matches tuple (x, second). Useful for implementing
6497 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
6498 //
6499 // BoundSecondMatcher is copyable and assignable, as we need to put
6500 // instances of this class in a vector when implementing
6501 // UnorderedPointwise().
6502 template <typename Tuple2Matcher, typename Second>
6503 class BoundSecondMatcher {
6504  public:
6505  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
6506  : tuple2_matcher_(tm), second_value_(second) {}
6507 
6508  BoundSecondMatcher(const BoundSecondMatcher& other) = default;
6509 
6510  template <typename T>
6511  operator Matcher<T>() const {
6512  return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
6513  }
6514 
6515  // We have to define this for UnorderedPointwise() to compile in
6516  // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
6517  // which requires the elements to be assignable in C++98. The
6518  // compiler cannot generate the operator= for us, as Tuple2Matcher
6519  // and Second may not be assignable.
6520  //
6521  // However, this should never be called, so the implementation just
6522  // need to assert.
6523  void operator=(const BoundSecondMatcher& /*rhs*/) {
6524  GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
6525  }
6526 
6527  private:
6528  template <typename T>
6529  class Impl : public MatcherInterface<T> {
6530  public:
6531  typedef ::std::tuple<T, Second> ArgTuple;
6532 
6533  Impl(const Tuple2Matcher& tm, const Second& second)
6534  : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
6535  second_value_(second) {}
6536 
6537  void DescribeTo(::std::ostream* os) const override {
6538  *os << "and ";
6539  UniversalPrint(second_value_, os);
6540  *os << " ";
6541  mono_tuple2_matcher_.DescribeTo(os);
6542  }
6543 
6544  bool MatchAndExplain(T x, MatchResultListener* listener) const override {
6545  return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
6546  listener);
6547  }
6548 
6549  private:
6550  const Matcher<const ArgTuple&> mono_tuple2_matcher_;
6551  const Second second_value_;
6552  };
6553 
6554  const Tuple2Matcher tuple2_matcher_;
6555  const Second second_value_;
6556 };
6557 
6558 // Given a 2-tuple matcher tm and a value second,
6559 // MatcherBindSecond(tm, second) returns a matcher that matches a
6560 // value x if and only if tm matches tuple (x, second). Useful for
6561 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
6562 template <typename Tuple2Matcher, typename Second>
6563 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
6564  const Tuple2Matcher& tm, const Second& second) {
6565  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
6566 }
6567 
6568 // Returns the description for a matcher defined using the MATCHER*()
6569 // macro where the user-supplied description string is "", if
6570 // 'negation' is false; otherwise returns the description of the
6571 // negation of the matcher. 'param_values' contains a list of strings
6572 // that are the print-out of the matcher's parameters.
6573 GTEST_API_ std::string FormatMatcherDescription(bool negation,
6574  const char* matcher_name,
6575  const Strings& param_values);
6576 
6577 // Implements a matcher that checks the value of a optional<> type variable.
6578 template <typename ValueMatcher>
6579 class OptionalMatcher {
6580  public:
6581  explicit OptionalMatcher(const ValueMatcher& value_matcher)
6582  : value_matcher_(value_matcher) {}
6583 
6584  template <typename Optional>
6585  operator Matcher<Optional>() const {
6586  return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
6587  }
6588 
6589  template <typename Optional>
6590  class Impl : public MatcherInterface<Optional> {
6591  public:
6592  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
6593  typedef typename OptionalView::value_type ValueType;
6594  explicit Impl(const ValueMatcher& value_matcher)
6595  : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
6596 
6597  void DescribeTo(::std::ostream* os) const override {
6598  *os << "value ";
6599  value_matcher_.DescribeTo(os);
6600  }
6601 
6602  void DescribeNegationTo(::std::ostream* os) const override {
6603  *os << "value ";
6604  value_matcher_.DescribeNegationTo(os);
6605  }
6606 
6607  bool MatchAndExplain(Optional optional,
6608  MatchResultListener* listener) const override {
6609  if (!optional) {
6610  *listener << "which is not engaged";
6611  return false;
6612  }
6613  const ValueType& value = *optional;
6614  StringMatchResultListener value_listener;
6615  const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
6616  *listener << "whose value " << PrintToString(value)
6617  << (match ? " matches" : " doesn't match");
6618  PrintIfNotEmpty(value_listener.str(), listener->stream());
6619  return match;
6620  }
6621 
6622  private:
6623  const Matcher<ValueType> value_matcher_;
6624  };
6625 
6626  private:
6627  const ValueMatcher value_matcher_;
6628 };
6629 
6630 namespace variant_matcher {
6631 // Overloads to allow VariantMatcher to do proper ADL lookup.
6632 template <typename T>
6633 void holds_alternative() {}
6634 template <typename T>
6635 void get() {}
6636 
6637 // Implements a matcher that checks the value of a variant<> type variable.
6638 template <typename T>
6639 class VariantMatcher {
6640  public:
6641  explicit VariantMatcher(::testing::Matcher<const T&> matcher)
6642  : matcher_(std::move(matcher)) {}
6643 
6644  template <typename Variant>
6645  bool MatchAndExplain(const Variant& value,
6646  ::testing::MatchResultListener* listener) const {
6647  using std::get;
6648  if (!listener->IsInterested()) {
6649  return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
6650  }
6651 
6652  if (!holds_alternative<T>(value)) {
6653  *listener << "whose value is not of type '" << GetTypeName() << "'";
6654  return false;
6655  }
6656 
6657  const T& elem = get<T>(value);
6658  StringMatchResultListener elem_listener;
6659  const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
6660  *listener << "whose value " << PrintToString(elem)
6661  << (match ? " matches" : " doesn't match");
6662  PrintIfNotEmpty(elem_listener.str(), listener->stream());
6663  return match;
6664  }
6665 
6666  void DescribeTo(std::ostream* os) const {
6667  *os << "is a variant<> with value of type '" << GetTypeName()
6668  << "' and the value ";
6669  matcher_.DescribeTo(os);
6670  }
6671 
6672  void DescribeNegationTo(std::ostream* os) const {
6673  *os << "is a variant<> with value of type other than '" << GetTypeName()
6674  << "' or the value ";
6675  matcher_.DescribeNegationTo(os);
6676  }
6677 
6678  private:
6679  static std::string GetTypeName() {
6680 #if GTEST_HAS_RTTI
6681  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6682  return internal::GetTypeName<T>());
6683 #endif
6684  return "the element type";
6685  }
6686 
6687  const ::testing::Matcher<const T&> matcher_;
6688 };
6689 
6690 } // namespace variant_matcher
6691 
6692 namespace any_cast_matcher {
6693 
6694 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
6695 template <typename T>
6696 void any_cast() {}
6697 
6698 // Implements a matcher that any_casts the value.
6699 template <typename T>
6700 class AnyCastMatcher {
6701  public:
6702  explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
6703  : matcher_(matcher) {}
6704 
6705  template <typename AnyType>
6706  bool MatchAndExplain(const AnyType& value,
6707  ::testing::MatchResultListener* listener) const {
6708  if (!listener->IsInterested()) {
6709  const T* ptr = any_cast<T>(&value);
6710  return ptr != nullptr && matcher_.Matches(*ptr);
6711  }
6712 
6713  const T* elem = any_cast<T>(&value);
6714  if (elem == nullptr) {
6715  *listener << "whose value is not of type '" << GetTypeName() << "'";
6716  return false;
6717  }
6718 
6719  StringMatchResultListener elem_listener;
6720  const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
6721  *listener << "whose value " << PrintToString(*elem)
6722  << (match ? " matches" : " doesn't match");
6723  PrintIfNotEmpty(elem_listener.str(), listener->stream());
6724  return match;
6725  }
6726 
6727  void DescribeTo(std::ostream* os) const {
6728  *os << "is an 'any' type with value of type '" << GetTypeName()
6729  << "' and the value ";
6730  matcher_.DescribeTo(os);
6731  }
6732 
6733  void DescribeNegationTo(std::ostream* os) const {
6734  *os << "is an 'any' type with value of type other than '" << GetTypeName()
6735  << "' or the value ";
6736  matcher_.DescribeNegationTo(os);
6737  }
6738 
6739  private:
6740  static std::string GetTypeName() {
6741 #if GTEST_HAS_RTTI
6742  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6743  return internal::GetTypeName<T>());
6744 #endif
6745  return "the element type";
6746  }
6747 
6748  const ::testing::Matcher<const T&> matcher_;
6749 };
6750 
6751 } // namespace any_cast_matcher
6752 
6753 // Implements the Args() matcher.
6754 template <class ArgsTuple, size_t... k>
6755 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
6756  public:
6757  using RawArgsTuple = typename std::decay<ArgsTuple>::type;
6758  using SelectedArgs =
6759  std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
6760  using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
6761 
6762  template <typename InnerMatcher>
6763  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
6764  : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
6765 
6766  bool MatchAndExplain(ArgsTuple args,
6767  MatchResultListener* listener) const override {
6768  // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
6769  (void)args;
6770  const SelectedArgs& selected_args =
6771  std::forward_as_tuple(std::get<k>(args)...);
6772  if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
6773 
6774  PrintIndices(listener->stream());
6775  *listener << "are " << PrintToString(selected_args);
6776 
6777  StringMatchResultListener inner_listener;
6778  const bool match =
6779  inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
6780  PrintIfNotEmpty(inner_listener.str(), listener->stream());
6781  return match;
6782  }
6783 
6784  void DescribeTo(::std::ostream* os) const override {
6785  *os << "are a tuple ";
6786  PrintIndices(os);
6787  inner_matcher_.DescribeTo(os);
6788  }
6789 
6790  void DescribeNegationTo(::std::ostream* os) const override {
6791  *os << "are a tuple ";
6792  PrintIndices(os);
6793  inner_matcher_.DescribeNegationTo(os);
6794  }
6795 
6796  private:
6797  // Prints the indices of the selected fields.
6798  static void PrintIndices(::std::ostream* os) {
6799  *os << "whose fields (";
6800  const char* sep = "";
6801  // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
6802  (void)sep;
6803  const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
6804  (void)dummy;
6805  *os << ") ";
6806  }
6807 
6808  MonomorphicInnerMatcher inner_matcher_;
6809 };
6810 
6811 template <class InnerMatcher, size_t... k>
6812 class ArgsMatcher {
6813  public:
6814  explicit ArgsMatcher(InnerMatcher inner_matcher)
6815  : inner_matcher_(std::move(inner_matcher)) {}
6816 
6817  template <typename ArgsTuple>
6818  operator Matcher<ArgsTuple>() const { // NOLINT
6819  return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
6820  }
6821 
6822  private:
6823  InnerMatcher inner_matcher_;
6824 };
6825 
6826 } // namespace internal
6827 
6828 // ElementsAreArray(iterator_first, iterator_last)
6829 // ElementsAreArray(pointer, count)
6830 // ElementsAreArray(array)
6831 // ElementsAreArray(container)
6832 // ElementsAreArray({ e1, e2, ..., en })
6833 //
6834 // The ElementsAreArray() functions are like ElementsAre(...), except
6835 // that they are given a homogeneous sequence rather than taking each
6836 // element as a function argument. The sequence can be specified as an
6837 // array, a pointer and count, a vector, an initializer list, or an
6838 // STL iterator range. In each of these cases, the underlying sequence
6839 // can be either a sequence of values or a sequence of matchers.
6840 //
6841 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
6842 
6843 template <typename Iter>
6844 inline internal::ElementsAreArrayMatcher<
6845  typename ::std::iterator_traits<Iter>::value_type>
6846 ElementsAreArray(Iter first, Iter last) {
6847  typedef typename ::std::iterator_traits<Iter>::value_type T;
6848  return internal::ElementsAreArrayMatcher<T>(first, last);
6849 }
6850 
6851 template <typename T>
6852 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6853  const T* pointer, size_t count) {
6854  return ElementsAreArray(pointer, pointer + count);
6855 }
6856 
6857 template <typename T, size_t N>
6858 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6859  const T (&array)[N]) {
6860  return ElementsAreArray(array, N);
6861 }
6862 
6863 template <typename Container>
6864 inline internal::ElementsAreArrayMatcher<typename Container::value_type>
6865 ElementsAreArray(const Container& container) {
6866  return ElementsAreArray(container.begin(), container.end());
6867 }
6868 
6869 template <typename T>
6870 inline internal::ElementsAreArrayMatcher<T>
6871 ElementsAreArray(::std::initializer_list<T> xs) {
6872  return ElementsAreArray(xs.begin(), xs.end());
6873 }
6874 
6875 // UnorderedElementsAreArray(iterator_first, iterator_last)
6876 // UnorderedElementsAreArray(pointer, count)
6877 // UnorderedElementsAreArray(array)
6878 // UnorderedElementsAreArray(container)
6879 // UnorderedElementsAreArray({ e1, e2, ..., en })
6880 //
6881 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
6882 // collection of matchers exists.
6883 //
6884 // The matchers can be specified as an array, a pointer and count, a container,
6885 // an initializer list, or an STL iterator range. In each of these cases, the
6886 // underlying matchers can be either values or matchers.
6887 
6888 template <typename Iter>
6889 inline internal::UnorderedElementsAreArrayMatcher<
6890  typename ::std::iterator_traits<Iter>::value_type>
6891 UnorderedElementsAreArray(Iter first, Iter last) {
6892  typedef typename ::std::iterator_traits<Iter>::value_type T;
6893  return internal::UnorderedElementsAreArrayMatcher<T>(
6894  internal::UnorderedMatcherRequire::ExactMatch, first, last);
6895 }
6896 
6897 template <typename T>
6898 inline internal::UnorderedElementsAreArrayMatcher<T>
6899 UnorderedElementsAreArray(const T* pointer, size_t count) {
6900  return UnorderedElementsAreArray(pointer, pointer + count);
6901 }
6902 
6903 template <typename T, size_t N>
6904 inline internal::UnorderedElementsAreArrayMatcher<T>
6905 UnorderedElementsAreArray(const T (&array)[N]) {
6906  return UnorderedElementsAreArray(array, N);
6907 }
6908 
6909 template <typename Container>
6910 inline internal::UnorderedElementsAreArrayMatcher<
6911  typename Container::value_type>
6912 UnorderedElementsAreArray(const Container& container) {
6913  return UnorderedElementsAreArray(container.begin(), container.end());
6914 }
6915 
6916 template <typename T>
6917 inline internal::UnorderedElementsAreArrayMatcher<T>
6918 UnorderedElementsAreArray(::std::initializer_list<T> xs) {
6919  return UnorderedElementsAreArray(xs.begin(), xs.end());
6920 }
6921 
6922 // _ is a matcher that matches anything of any type.
6923 //
6924 // This definition is fine as:
6925 //
6926 // 1. The C++ standard permits using the name _ in a namespace that
6927 // is not the global namespace or ::std.
6928 // 2. The AnythingMatcher class has no data member or constructor,
6929 // so it's OK to create global variables of this type.
6930 // 3. c-style has approved of using _ in this case.
6931 const internal::AnythingMatcher _ = {};
6932 // Creates a matcher that matches any value of the given type T.
6933 template <typename T>
6934 inline Matcher<T> A() {
6935  return _;
6936 }
6937 
6938 // Creates a matcher that matches any value of the given type T.
6939 template <typename T>
6940 inline Matcher<T> An() {
6941  return _;
6942 }
6943 
6944 template <typename T, typename M>
6945 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
6946  const M& value, std::false_type /* convertible_to_matcher */,
6947  std::false_type /* convertible_to_T */) {
6948  return Eq(value);
6949 }
6950 
6951 // Creates a polymorphic matcher that matches any NULL pointer.
6952 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
6953  return MakePolymorphicMatcher(internal::IsNullMatcher());
6954 }
6955 
6956 // Creates a polymorphic matcher that matches any non-NULL pointer.
6957 // This is convenient as Not(NULL) doesn't compile (the compiler
6958 // thinks that that expression is comparing a pointer with an integer).
6959 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
6960  return MakePolymorphicMatcher(internal::NotNullMatcher());
6961 }
6962 
6963 // Creates a polymorphic matcher that matches any argument that
6964 // references variable x.
6965 template <typename T>
6966 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
6967  return internal::RefMatcher<T&>(x);
6968 }
6969 
6970 // Creates a polymorphic matcher that matches any NaN floating point.
6971 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
6972  return MakePolymorphicMatcher(internal::IsNanMatcher());
6973 }
6974 
6975 // Creates a matcher that matches any double argument approximately
6976 // equal to rhs, where two NANs are considered unequal.
6977 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
6978  return internal::FloatingEqMatcher<double>(rhs, false);
6979 }
6980 
6981 // Creates a matcher that matches any double argument approximately
6982 // equal to rhs, including NaN values when rhs is NaN.
6983 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
6984  return internal::FloatingEqMatcher<double>(rhs, true);
6985 }
6986 
6987 // Creates a matcher that matches any double argument approximately equal to
6988 // rhs, up to the specified max absolute error bound, where two NANs are
6989 // considered unequal. The max absolute error bound must be non-negative.
6990 inline internal::FloatingEqMatcher<double> DoubleNear(
6991  double rhs, double max_abs_error) {
6992  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
6993 }
6994 
6995 // Creates a matcher that matches any double argument approximately equal to
6996 // rhs, up to the specified max absolute error bound, including NaN values when
6997 // rhs is NaN. The max absolute error bound must be non-negative.
6998 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
6999  double rhs, double max_abs_error) {
7000  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
7001 }
7002 
7003 // Creates a matcher that matches any float argument approximately
7004 // equal to rhs, where two NANs are considered unequal.
7005 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
7006  return internal::FloatingEqMatcher<float>(rhs, false);
7007 }
7008 
7009 // Creates a matcher that matches any float argument approximately
7010 // equal to rhs, including NaN values when rhs is NaN.
7011 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
7012  return internal::FloatingEqMatcher<float>(rhs, true);
7013 }
7014 
7015 // Creates a matcher that matches any float argument approximately equal to
7016 // rhs, up to the specified max absolute error bound, where two NANs are
7017 // considered unequal. The max absolute error bound must be non-negative.
7018 inline internal::FloatingEqMatcher<float> FloatNear(
7019  float rhs, float max_abs_error) {
7020  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
7021 }
7022 
7023 // Creates a matcher that matches any float argument approximately equal to
7024 // rhs, up to the specified max absolute error bound, including NaN values when
7025 // rhs is NaN. The max absolute error bound must be non-negative.
7026 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
7027  float rhs, float max_abs_error) {
7028  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
7029 }
7030 
7031 // Creates a matcher that matches a pointer (raw or smart) that points
7032 // to a value that matches inner_matcher.
7033 template <typename InnerMatcher>
7034 inline internal::PointeeMatcher<InnerMatcher> Pointee(
7035  const InnerMatcher& inner_matcher) {
7036  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
7037 }
7038 
7039 #if GTEST_HAS_RTTI
7040 // Creates a matcher that matches a pointer or reference that matches
7041 // inner_matcher when dynamic_cast<To> is applied.
7042 // The result of dynamic_cast<To> is forwarded to the inner matcher.
7043 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
7044 // If To is a reference and the cast fails, this matcher returns false
7045 // immediately.
7046 template <typename To>
7047 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
7048 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
7049  return MakePolymorphicMatcher(
7050  internal::WhenDynamicCastToMatcher<To>(inner_matcher));
7051 }
7052 #endif // GTEST_HAS_RTTI
7053 
7054 // Creates a matcher that matches an object whose given field matches
7055 // 'matcher'. For example,
7056 // Field(&Foo::number, Ge(5))
7057 // matches a Foo object x if and only if x.number >= 5.
7058 template <typename Class, typename FieldType, typename FieldMatcher>
7059 inline PolymorphicMatcher<
7060  internal::FieldMatcher<Class, FieldType> > Field(
7061  FieldType Class::*field, const FieldMatcher& matcher) {
7062  return MakePolymorphicMatcher(
7063  internal::FieldMatcher<Class, FieldType>(
7064  field, MatcherCast<const FieldType&>(matcher)));
7065  // The call to MatcherCast() is required for supporting inner
7066  // matchers of compatible types. For example, it allows
7067  // Field(&Foo::bar, m)
7068  // to compile where bar is an int32 and m is a matcher for int64.
7069 }
7070 
7071 // Same as Field() but also takes the name of the field to provide better error
7072 // messages.
7073 template <typename Class, typename FieldType, typename FieldMatcher>
7074 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
7075  const std::string& field_name, FieldType Class::*field,
7076  const FieldMatcher& matcher) {
7077  return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
7078  field_name, field, MatcherCast<const FieldType&>(matcher)));
7079 }
7080 
7081 // Creates a matcher that matches an object whose given property
7082 // matches 'matcher'. For example,
7083 // Property(&Foo::str, StartsWith("hi"))
7084 // matches a Foo object x if and only if x.str() starts with "hi".
7085 template <typename Class, typename PropertyType, typename PropertyMatcher>
7086 inline PolymorphicMatcher<internal::PropertyMatcher<
7087  Class, PropertyType, PropertyType (Class::*)() const> >
7088 Property(PropertyType (Class::*property)() const,
7089  const PropertyMatcher& matcher) {
7090  return MakePolymorphicMatcher(
7091  internal::PropertyMatcher<Class, PropertyType,
7092  PropertyType (Class::*)() const>(
7093  property, MatcherCast<const PropertyType&>(matcher)));
7094  // The call to MatcherCast() is required for supporting inner
7095  // matchers of compatible types. For example, it allows
7096  // Property(&Foo::bar, m)
7097  // to compile where bar() returns an int32 and m is a matcher for int64.
7098 }
7099 
7100 // Same as Property() above, but also takes the name of the property to provide
7101 // better error messages.
7102 template <typename Class, typename PropertyType, typename PropertyMatcher>
7103 inline PolymorphicMatcher<internal::PropertyMatcher<
7104  Class, PropertyType, PropertyType (Class::*)() const> >
7105 Property(const std::string& property_name,
7106  PropertyType (Class::*property)() const,
7107  const PropertyMatcher& matcher) {
7108  return MakePolymorphicMatcher(
7109  internal::PropertyMatcher<Class, PropertyType,
7110  PropertyType (Class::*)() const>(
7111  property_name, property, MatcherCast<const PropertyType&>(matcher)));
7112 }
7113 
7114 // The same as above but for reference-qualified member functions.
7115 template <typename Class, typename PropertyType, typename PropertyMatcher>
7116 inline PolymorphicMatcher<internal::PropertyMatcher<
7117  Class, PropertyType, PropertyType (Class::*)() const &> >
7118 Property(PropertyType (Class::*property)() const &,
7119  const PropertyMatcher& matcher) {
7120  return MakePolymorphicMatcher(
7121  internal::PropertyMatcher<Class, PropertyType,
7122  PropertyType (Class::*)() const&>(
7123  property, MatcherCast<const PropertyType&>(matcher)));
7124 }
7125 
7126 // Three-argument form for reference-qualified member functions.
7127 template <typename Class, typename PropertyType, typename PropertyMatcher>
7128 inline PolymorphicMatcher<internal::PropertyMatcher<
7129  Class, PropertyType, PropertyType (Class::*)() const &> >
7130 Property(const std::string& property_name,
7131  PropertyType (Class::*property)() const &,
7132  const PropertyMatcher& matcher) {
7133  return MakePolymorphicMatcher(
7134  internal::PropertyMatcher<Class, PropertyType,
7135  PropertyType (Class::*)() const&>(
7136  property_name, property, MatcherCast<const PropertyType&>(matcher)));
7137 }
7138 
7139 // Creates a matcher that matches an object if and only if the result of
7140 // applying a callable to x matches 'matcher'. For example,
7141 // ResultOf(f, StartsWith("hi"))
7142 // matches a Foo object x if and only if f(x) starts with "hi".
7143 // `callable` parameter can be a function, function pointer, or a functor. It is
7144 // required to keep no state affecting the results of the calls on it and make
7145 // no assumptions about how many calls will be made. Any state it keeps must be
7146 // protected from the concurrent access.
7147 template <typename Callable, typename InnerMatcher>
7148 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
7149  Callable callable, InnerMatcher matcher) {
7150  return internal::ResultOfMatcher<Callable, InnerMatcher>(
7151  std::move(callable), std::move(matcher));
7152 }
7153 
7154 // String matchers.
7155 
7156 // Matches a string equal to str.
7157 template <typename T = std::string>
7158 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
7159  const internal::StringLike<T>& str) {
7160  return MakePolymorphicMatcher(
7161  internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
7162 }
7163 
7164 // Matches a string not equal to str.
7165 template <typename T = std::string>
7166 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
7167  const internal::StringLike<T>& str) {
7168  return MakePolymorphicMatcher(
7169  internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
7170 }
7171 
7172 // Matches a string equal to str, ignoring case.
7173 template <typename T = std::string>
7174 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
7175  const internal::StringLike<T>& str) {
7176  return MakePolymorphicMatcher(
7177  internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
7178 }
7179 
7180 // Matches a string not equal to str, ignoring case.
7181 template <typename T = std::string>
7182 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
7183  const internal::StringLike<T>& str) {
7184  return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
7185  std::string(str), false, false));
7186 }
7187 
7188 // Creates a matcher that matches any string, std::string, or C string
7189 // that contains the given substring.
7190 template <typename T = std::string>
7191 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
7192  const internal::StringLike<T>& substring) {
7193  return MakePolymorphicMatcher(
7194  internal::HasSubstrMatcher<std::string>(std::string(substring)));
7195 }
7196 
7197 // Matches a string that starts with 'prefix' (case-sensitive).
7198 template <typename T = std::string>
7199 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
7200  const internal::StringLike<T>& prefix) {
7201  return MakePolymorphicMatcher(
7202  internal::StartsWithMatcher<std::string>(std::string(prefix)));
7203 }
7204 
7205 // Matches a string that ends with 'suffix' (case-sensitive).
7206 template <typename T = std::string>
7207 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
7208  const internal::StringLike<T>& suffix) {
7209  return MakePolymorphicMatcher(
7210  internal::EndsWithMatcher<std::string>(std::string(suffix)));
7211 }
7212 
7213 #if GTEST_HAS_STD_WSTRING
7214 // Wide string matchers.
7215 
7216 // Matches a string equal to str.
7217 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
7218  const std::wstring& str) {
7219  return MakePolymorphicMatcher(
7220  internal::StrEqualityMatcher<std::wstring>(str, true, true));
7221 }
7222 
7223 // Matches a string not equal to str.
7224 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
7225  const std::wstring& str) {
7226  return MakePolymorphicMatcher(
7227  internal::StrEqualityMatcher<std::wstring>(str, false, true));
7228 }
7229 
7230 // Matches a string equal to str, ignoring case.
7231 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7232 StrCaseEq(const std::wstring& str) {
7233  return MakePolymorphicMatcher(
7234  internal::StrEqualityMatcher<std::wstring>(str, true, false));
7235 }
7236 
7237 // Matches a string not equal to str, ignoring case.
7238 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7239 StrCaseNe(const std::wstring& str) {
7240  return MakePolymorphicMatcher(
7241  internal::StrEqualityMatcher<std::wstring>(str, false, false));
7242 }
7243 
7244 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
7245 // that contains the given substring.
7246 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
7247  const std::wstring& substring) {
7248  return MakePolymorphicMatcher(
7249  internal::HasSubstrMatcher<std::wstring>(substring));
7250 }
7251 
7252 // Matches a string that starts with 'prefix' (case-sensitive).
7253 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
7254 StartsWith(const std::wstring& prefix) {
7255  return MakePolymorphicMatcher(
7256  internal::StartsWithMatcher<std::wstring>(prefix));
7257 }
7258 
7259 // Matches a string that ends with 'suffix' (case-sensitive).
7260 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
7261  const std::wstring& suffix) {
7262  return MakePolymorphicMatcher(
7263  internal::EndsWithMatcher<std::wstring>(suffix));
7264 }
7265 
7266 #endif // GTEST_HAS_STD_WSTRING
7267 
7268 // Creates a polymorphic matcher that matches a 2-tuple where the
7269 // first field == the second field.
7270 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
7271 
7272 // Creates a polymorphic matcher that matches a 2-tuple where the
7273 // first field >= the second field.
7274 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
7275 
7276 // Creates a polymorphic matcher that matches a 2-tuple where the
7277 // first field > the second field.
7278 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
7279 
7280 // Creates a polymorphic matcher that matches a 2-tuple where the
7281 // first field <= the second field.
7282 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
7283 
7284 // Creates a polymorphic matcher that matches a 2-tuple where the
7285 // first field < the second field.
7286 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
7287 
7288 // Creates a polymorphic matcher that matches a 2-tuple where the
7289 // first field != the second field.
7290 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
7291 
7292 // Creates a polymorphic matcher that matches a 2-tuple where
7293 // FloatEq(first field) matches the second field.
7294 inline internal::FloatingEq2Matcher<float> FloatEq() {
7295  return internal::FloatingEq2Matcher<float>();
7296 }
7297 
7298 // Creates a polymorphic matcher that matches a 2-tuple where
7299 // DoubleEq(first field) matches the second field.
7300 inline internal::FloatingEq2Matcher<double> DoubleEq() {
7301  return internal::FloatingEq2Matcher<double>();
7302 }
7303 
7304 // Creates a polymorphic matcher that matches a 2-tuple where
7305 // FloatEq(first field) matches the second field with NaN equality.
7306 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
7307  return internal::FloatingEq2Matcher<float>(true);
7308 }
7309 
7310 // Creates a polymorphic matcher that matches a 2-tuple where
7311 // DoubleEq(first field) matches the second field with NaN equality.
7312 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
7313  return internal::FloatingEq2Matcher<double>(true);
7314 }
7315 
7316 // Creates a polymorphic matcher that matches a 2-tuple where
7317 // FloatNear(first field, max_abs_error) matches the second field.
7318 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
7319  return internal::FloatingEq2Matcher<float>(max_abs_error);
7320 }
7321 
7322 // Creates a polymorphic matcher that matches a 2-tuple where
7323 // DoubleNear(first field, max_abs_error) matches the second field.
7324 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
7325  return internal::FloatingEq2Matcher<double>(max_abs_error);
7326 }
7327 
7328 // Creates a polymorphic matcher that matches a 2-tuple where
7329 // FloatNear(first field, max_abs_error) matches the second field with NaN
7330 // equality.
7331 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
7332  float max_abs_error) {
7333  return internal::FloatingEq2Matcher<float>(max_abs_error, true);
7334 }
7335 
7336 // Creates a polymorphic matcher that matches a 2-tuple where
7337 // DoubleNear(first field, max_abs_error) matches the second field with NaN
7338 // equality.
7339 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
7340  double max_abs_error) {
7341  return internal::FloatingEq2Matcher<double>(max_abs_error, true);
7342 }
7343 
7344 // Creates a matcher that matches any value of type T that m doesn't
7345 // match.
7346 template <typename InnerMatcher>
7347 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
7348  return internal::NotMatcher<InnerMatcher>(m);
7349 }
7350 
7351 // Returns a matcher that matches anything that satisfies the given
7352 // predicate. The predicate can be any unary function or functor
7353 // whose return type can be implicitly converted to bool.
7354 template <typename Predicate>
7355 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
7356 Truly(Predicate pred) {
7357  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
7358 }
7359 
7360 // Returns a matcher that matches the container size. The container must
7361 // support both size() and size_type which all STL-like containers provide.
7362 // Note that the parameter 'size' can be a value of type size_type as well as
7363 // matcher. For instance:
7364 // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
7365 // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
7366 template <typename SizeMatcher>
7367 inline internal::SizeIsMatcher<SizeMatcher>
7368 SizeIs(const SizeMatcher& size_matcher) {
7369  return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
7370 }
7371 
7372 // Returns a matcher that matches the distance between the container's begin()
7373 // iterator and its end() iterator, i.e. the size of the container. This matcher
7374 // can be used instead of SizeIs with containers such as std::forward_list which
7375 // do not implement size(). The container must provide const_iterator (with
7376 // valid iterator_traits), begin() and end().
7377 template <typename DistanceMatcher>
7378 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
7379 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
7380  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
7381 }
7382 
7383 // Returns a matcher that matches an equal container.
7384 // This matcher behaves like Eq(), but in the event of mismatch lists the
7385 // values that are included in one container but not the other. (Duplicate
7386 // values and order differences are not explained.)
7387 template <typename Container>
7388 inline PolymorphicMatcher<internal::ContainerEqMatcher<
7389  typename std::remove_const<Container>::type>>
7390 ContainerEq(const Container& rhs) {
7391  return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
7392 }
7393 
7394 // Returns a matcher that matches a container that, when sorted using
7395 // the given comparator, matches container_matcher.
7396 template <typename Comparator, typename ContainerMatcher>
7397 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
7398 WhenSortedBy(const Comparator& comparator,
7399  const ContainerMatcher& container_matcher) {
7400  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
7401  comparator, container_matcher);
7402 }
7403 
7404 // Returns a matcher that matches a container that, when sorted using
7405 // the < operator, matches container_matcher.
7406 template <typename ContainerMatcher>
7407 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
7408 WhenSorted(const ContainerMatcher& container_matcher) {
7409  return
7410  internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
7411  internal::LessComparator(), container_matcher);
7412 }
7413 
7414 // Matches an STL-style container or a native array that contains the
7415 // same number of elements as in rhs, where its i-th element and rhs's
7416 // i-th element (as a pair) satisfy the given pair matcher, for all i.
7417 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
7418 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
7419 // LHS container and the RHS container respectively.
7420 template <typename TupleMatcher, typename Container>
7421 inline internal::PointwiseMatcher<TupleMatcher,
7422  typename std::remove_const<Container>::type>
7423 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
7424  return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
7425  rhs);
7426 }
7427 
7428 
7429 // Supports the Pointwise(m, {a, b, c}) syntax.
7430 template <typename TupleMatcher, typename T>
7431 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
7432  const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
7433  return Pointwise(tuple_matcher, std::vector<T>(rhs));
7434 }
7435 
7436 
7437 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
7438 // container or a native array that contains the same number of
7439 // elements as in rhs, where in some permutation of the container, its
7440 // i-th element and rhs's i-th element (as a pair) satisfy the given
7441 // pair matcher, for all i. Tuple2Matcher must be able to be safely
7442 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
7443 // the types of elements in the LHS container and the RHS container
7444 // respectively.
7445 //
7446 // This is like Pointwise(pair_matcher, rhs), except that the element
7447 // order doesn't matter.
7448 template <typename Tuple2Matcher, typename RhsContainer>
7449 inline internal::UnorderedElementsAreArrayMatcher<
7450  typename internal::BoundSecondMatcher<
7451  Tuple2Matcher,
7452  typename internal::StlContainerView<
7453  typename std::remove_const<RhsContainer>::type>::type::value_type>>
7454 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7455  const RhsContainer& rhs_container) {
7456  // RhsView allows the same code to handle RhsContainer being a
7457  // STL-style container and it being a native C-style array.
7458  typedef typename internal::StlContainerView<RhsContainer> RhsView;
7459  typedef typename RhsView::type RhsStlContainer;
7460  typedef typename RhsStlContainer::value_type Second;
7461  const RhsStlContainer& rhs_stl_container =
7462  RhsView::ConstReference(rhs_container);
7463 
7464  // Create a matcher for each element in rhs_container.
7465  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
7466  for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
7467  it != rhs_stl_container.end(); ++it) {
7468  matchers.push_back(
7469  internal::MatcherBindSecond(tuple2_matcher, *it));
7470  }
7471 
7472  // Delegate the work to UnorderedElementsAreArray().
7473  return UnorderedElementsAreArray(matchers);
7474 }
7475 
7476 
7477 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
7478 template <typename Tuple2Matcher, typename T>
7479 inline internal::UnorderedElementsAreArrayMatcher<
7480  typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
7481 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7482  std::initializer_list<T> rhs) {
7483  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
7484 }
7485 
7486 
7487 // Matches an STL-style container or a native array that contains at
7488 // least one element matching the given value or matcher.
7489 //
7490 // Examples:
7491 // ::std::set<int> page_ids;
7492 // page_ids.insert(3);
7493 // page_ids.insert(1);
7494 // EXPECT_THAT(page_ids, Contains(1));
7495 // EXPECT_THAT(page_ids, Contains(Gt(2)));
7496 // EXPECT_THAT(page_ids, Not(Contains(4)));
7497 //
7498 // ::std::map<int, size_t> page_lengths;
7499 // page_lengths[1] = 100;
7500 // EXPECT_THAT(page_lengths,
7501 // Contains(::std::pair<const int, size_t>(1, 100)));
7502 //
7503 // const char* user_ids[] = { "joe", "mike", "tom" };
7504 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
7505 template <typename M>
7506 inline internal::ContainsMatcher<M> Contains(M matcher) {
7507  return internal::ContainsMatcher<M>(matcher);
7508 }
7509 
7510 // IsSupersetOf(iterator_first, iterator_last)
7511 // IsSupersetOf(pointer, count)
7512 // IsSupersetOf(array)
7513 // IsSupersetOf(container)
7514 // IsSupersetOf({e1, e2, ..., en})
7515 //
7516 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
7517 // of matchers exists. In other words, a container matches
7518 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
7519 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
7520 // ..., and yn matches en. Obviously, the size of the container must be >= n
7521 // in order to have a match. Examples:
7522 //
7523 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
7524 // 1 matches Ne(0).
7525 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
7526 // both Eq(1) and Lt(2). The reason is that different matchers must be used
7527 // for elements in different slots of the container.
7528 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
7529 // Eq(1) and (the second) 1 matches Lt(2).
7530 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
7531 // Gt(1) and 3 matches (the second) Gt(1).
7532 //
7533 // The matchers can be specified as an array, a pointer and count, a container,
7534 // an initializer list, or an STL iterator range. In each of these cases, the
7535 // underlying matchers can be either values or matchers.
7536 
7537 template <typename Iter>
7538 inline internal::UnorderedElementsAreArrayMatcher<
7539  typename ::std::iterator_traits<Iter>::value_type>
7540 IsSupersetOf(Iter first, Iter last) {
7541  typedef typename ::std::iterator_traits<Iter>::value_type T;
7542  return internal::UnorderedElementsAreArrayMatcher<T>(
7543  internal::UnorderedMatcherRequire::Superset, first, last);
7544 }
7545 
7546 template <typename T>
7547 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7548  const T* pointer, size_t count) {
7549  return IsSupersetOf(pointer, pointer + count);
7550 }
7551 
7552 template <typename T, size_t N>
7553 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7554  const T (&array)[N]) {
7555  return IsSupersetOf(array, N);
7556 }
7557 
7558 template <typename Container>
7559 inline internal::UnorderedElementsAreArrayMatcher<
7560  typename Container::value_type>
7561 IsSupersetOf(const Container& container) {
7562  return IsSupersetOf(container.begin(), container.end());
7563 }
7564 
7565 template <typename T>
7566 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7567  ::std::initializer_list<T> xs) {
7568  return IsSupersetOf(xs.begin(), xs.end());
7569 }
7570 
7571 // IsSubsetOf(iterator_first, iterator_last)
7572 // IsSubsetOf(pointer, count)
7573 // IsSubsetOf(array)
7574 // IsSubsetOf(container)
7575 // IsSubsetOf({e1, e2, ..., en})
7576 //
7577 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
7578 // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
7579 // only if there is a subset of matchers {m1, ..., mk} which would match the
7580 // container using UnorderedElementsAre. Obviously, the size of the container
7581 // must be <= n in order to have a match. Examples:
7582 //
7583 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
7584 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
7585 // matches Lt(0).
7586 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
7587 // match Gt(0). The reason is that different matchers must be used for
7588 // elements in different slots of the container.
7589 //
7590 // The matchers can be specified as an array, a pointer and count, a container,
7591 // an initializer list, or an STL iterator range. In each of these cases, the
7592 // underlying matchers can be either values or matchers.
7593 
7594 template <typename Iter>
7595 inline internal::UnorderedElementsAreArrayMatcher<
7596  typename ::std::iterator_traits<Iter>::value_type>
7597 IsSubsetOf(Iter first, Iter last) {
7598  typedef typename ::std::iterator_traits<Iter>::value_type T;
7599  return internal::UnorderedElementsAreArrayMatcher<T>(
7600  internal::UnorderedMatcherRequire::Subset, first, last);
7601 }
7602 
7603 template <typename T>
7604 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7605  const T* pointer, size_t count) {
7606  return IsSubsetOf(pointer, pointer + count);
7607 }
7608 
7609 template <typename T, size_t N>
7610 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7611  const T (&array)[N]) {
7612  return IsSubsetOf(array, N);
7613 }
7614 
7615 template <typename Container>
7616 inline internal::UnorderedElementsAreArrayMatcher<
7617  typename Container::value_type>
7618 IsSubsetOf(const Container& container) {
7619  return IsSubsetOf(container.begin(), container.end());
7620 }
7621 
7622 template <typename T>
7623 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7624  ::std::initializer_list<T> xs) {
7625  return IsSubsetOf(xs.begin(), xs.end());
7626 }
7627 
7628 // Matches an STL-style container or a native array that contains only
7629 // elements matching the given value or matcher.
7630 //
7631 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
7632 // the messages are different.
7633 //
7634 // Examples:
7635 // ::std::set<int> page_ids;
7636 // // Each(m) matches an empty container, regardless of what m is.
7637 // EXPECT_THAT(page_ids, Each(Eq(1)));
7638 // EXPECT_THAT(page_ids, Each(Eq(77)));
7639 //
7640 // page_ids.insert(3);
7641 // EXPECT_THAT(page_ids, Each(Gt(0)));
7642 // EXPECT_THAT(page_ids, Not(Each(Gt(4))));
7643 // page_ids.insert(1);
7644 // EXPECT_THAT(page_ids, Not(Each(Lt(2))));
7645 //
7646 // ::std::map<int, size_t> page_lengths;
7647 // page_lengths[1] = 100;
7648 // page_lengths[2] = 200;
7649 // page_lengths[3] = 300;
7650 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
7651 // EXPECT_THAT(page_lengths, Each(Key(Le(3))));
7652 //
7653 // const char* user_ids[] = { "joe", "mike", "tom" };
7654 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
7655 template <typename M>
7656 inline internal::EachMatcher<M> Each(M matcher) {
7657  return internal::EachMatcher<M>(matcher);
7658 }
7659 
7660 // Key(inner_matcher) matches an std::pair whose 'first' field matches
7661 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
7662 // std::map that contains at least one element whose key is >= 5.
7663 template <typename M>
7664 inline internal::KeyMatcher<M> Key(M inner_matcher) {
7665  return internal::KeyMatcher<M>(inner_matcher);
7666 }
7667 
7668 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
7669 // matches first_matcher and whose 'second' field matches second_matcher. For
7670 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
7671 // to match a std::map<int, string> that contains exactly one element whose key
7672 // is >= 5 and whose value equals "foo".
7673 template <typename FirstMatcher, typename SecondMatcher>
7674 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
7675 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
7676  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
7677  first_matcher, second_matcher);
7678 }
7679 
7680 namespace no_adl {
7681 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
7682 // These include those that support `get<I>(obj)`, and when structured bindings
7683 // are enabled any class that supports them.
7684 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
7685 template <typename... M>
7686 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
7687  M&&... matchers) {
7688  return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
7689  std::forward<M>(matchers)...);
7690 }
7691 
7692 // Creates a matcher that matches a pointer (raw or smart) that matches
7693 // inner_matcher.
7694 template <typename InnerMatcher>
7695 inline internal::PointerMatcher<InnerMatcher> Pointer(
7696  const InnerMatcher& inner_matcher) {
7697  return internal::PointerMatcher<InnerMatcher>(inner_matcher);
7698 }
7699 
7700 // Creates a matcher that matches an object that has an address that matches
7701 // inner_matcher.
7702 template <typename InnerMatcher>
7703 inline internal::AddressMatcher<InnerMatcher> Address(
7704  const InnerMatcher& inner_matcher) {
7705  return internal::AddressMatcher<InnerMatcher>(inner_matcher);
7706 }
7707 } // namespace no_adl
7708 
7709 // Returns a predicate that is satisfied by anything that matches the
7710 // given matcher.
7711 template <typename M>
7712 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
7713  return internal::MatcherAsPredicate<M>(matcher);
7714 }
7715 
7716 // Returns true if and only if the value matches the matcher.
7717 template <typename T, typename M>
7718 inline bool Value(const T& value, M matcher) {
7719  return testing::Matches(matcher)(value);
7720 }
7721 
7722 // Matches the value against the given matcher and explains the match
7723 // result to listener.
7724 template <typename T, typename M>
7725 inline bool ExplainMatchResult(
7726  M matcher, const T& value, MatchResultListener* listener) {
7727  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
7728 }
7729 
7730 // Returns a string representation of the given matcher. Useful for description
7731 // strings of matchers defined using MATCHER_P* macros that accept matchers as
7732 // their arguments. For example:
7733 //
7734 // MATCHER_P(XAndYThat, matcher,
7735 // "X that " + DescribeMatcher<int>(matcher, negation) +
7736 // " and Y that " + DescribeMatcher<double>(matcher, negation)) {
7737 // return ExplainMatchResult(matcher, arg.x(), result_listener) &&
7738 // ExplainMatchResult(matcher, arg.y(), result_listener);
7739 // }
7740 template <typename T, typename M>
7741 std::string DescribeMatcher(const M& matcher, bool negation = false) {
7742  ::std::stringstream ss;
7743  Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
7744  if (negation) {
7745  monomorphic_matcher.DescribeNegationTo(&ss);
7746  } else {
7747  monomorphic_matcher.DescribeTo(&ss);
7748  }
7749  return ss.str();
7750 }
7751 
7752 template <typename... Args>
7753 internal::ElementsAreMatcher<
7754  std::tuple<typename std::decay<const Args&>::type...>>
7755 ElementsAre(const Args&... matchers) {
7756  return internal::ElementsAreMatcher<
7757  std::tuple<typename std::decay<const Args&>::type...>>(
7758  std::make_tuple(matchers...));
7759 }
7760 
7761 template <typename... Args>
7762 internal::UnorderedElementsAreMatcher<
7763  std::tuple<typename std::decay<const Args&>::type...>>
7764 UnorderedElementsAre(const Args&... matchers) {
7765  return internal::UnorderedElementsAreMatcher<
7766  std::tuple<typename std::decay<const Args&>::type...>>(
7767  std::make_tuple(matchers...));
7768 }
7769 
7770 // Define variadic matcher versions.
7771 template <typename... Args>
7772 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
7773  const Args&... matchers) {
7774  return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
7775  matchers...);
7776 }
7777 
7778 template <typename... Args>
7779 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
7780  const Args&... matchers) {
7781  return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
7782  matchers...);
7783 }
7784 
7785 // AnyOfArray(array)
7786 // AnyOfArray(pointer, count)
7787 // AnyOfArray(container)
7788 // AnyOfArray({ e1, e2, ..., en })
7789 // AnyOfArray(iterator_first, iterator_last)
7790 //
7791 // AnyOfArray() verifies whether a given value matches any member of a
7792 // collection of matchers.
7793 //
7794 // AllOfArray(array)
7795 // AllOfArray(pointer, count)
7796 // AllOfArray(container)
7797 // AllOfArray({ e1, e2, ..., en })
7798 // AllOfArray(iterator_first, iterator_last)
7799 //
7800 // AllOfArray() verifies whether a given value matches all members of a
7801 // collection of matchers.
7802 //
7803 // The matchers can be specified as an array, a pointer and count, a container,
7804 // an initializer list, or an STL iterator range. In each of these cases, the
7805 // underlying matchers can be either values or matchers.
7806 
7807 template <typename Iter>
7808 inline internal::AnyOfArrayMatcher<
7809  typename ::std::iterator_traits<Iter>::value_type>
7810 AnyOfArray(Iter first, Iter last) {
7811  return internal::AnyOfArrayMatcher<
7812  typename ::std::iterator_traits<Iter>::value_type>(first, last);
7813 }
7814 
7815 template <typename Iter>
7816 inline internal::AllOfArrayMatcher<
7817  typename ::std::iterator_traits<Iter>::value_type>
7818 AllOfArray(Iter first, Iter last) {
7819  return internal::AllOfArrayMatcher<
7820  typename ::std::iterator_traits<Iter>::value_type>(first, last);
7821 }
7822 
7823 template <typename T>
7824 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
7825  return AnyOfArray(ptr, ptr + count);
7826 }
7827 
7828 template <typename T>
7829 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
7830  return AllOfArray(ptr, ptr + count);
7831 }
7832 
7833 template <typename T, size_t N>
7834 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
7835  return AnyOfArray(array, N);
7836 }
7837 
7838 template <typename T, size_t N>
7839 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
7840  return AllOfArray(array, N);
7841 }
7842 
7843 template <typename Container>
7844 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
7845  const Container& container) {
7846  return AnyOfArray(container.begin(), container.end());
7847 }
7848 
7849 template <typename Container>
7850 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
7851  const Container& container) {
7852  return AllOfArray(container.begin(), container.end());
7853 }
7854 
7855 template <typename T>
7856 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
7857  ::std::initializer_list<T> xs) {
7858  return AnyOfArray(xs.begin(), xs.end());
7859 }
7860 
7861 template <typename T>
7862 inline internal::AllOfArrayMatcher<T> AllOfArray(
7863  ::std::initializer_list<T> xs) {
7864  return AllOfArray(xs.begin(), xs.end());
7865 }
7866 
7867 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
7868 // fields of it matches a_matcher. C++ doesn't support default
7869 // arguments for function templates, so we have to overload it.
7870 template <size_t... k, typename InnerMatcher>
7871 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
7872  InnerMatcher&& matcher) {
7873  return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
7874  std::forward<InnerMatcher>(matcher));
7875 }
7876 
7877 // AllArgs(m) is a synonym of m. This is useful in
7878 //
7879 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
7880 //
7881 // which is easier to read than
7882 //
7883 // EXPECT_CALL(foo, Bar(_, _)).With(Eq());
7884 template <typename InnerMatcher>
7885 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
7886 
7887 // Returns a matcher that matches the value of an optional<> type variable.
7888 // The matcher implementation only uses '!arg' and requires that the optional<>
7889 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
7890 // and is printable using 'PrintToString'. It is compatible with
7891 // std::optional/std::experimental::optional.
7892 // Note that to compare an optional type variable against nullopt you should
7893 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
7894 // optional value contains an optional itself.
7895 template <typename ValueMatcher>
7896 inline internal::OptionalMatcher<ValueMatcher> Optional(
7897  const ValueMatcher& value_matcher) {
7898  return internal::OptionalMatcher<ValueMatcher>(value_matcher);
7899 }
7900 
7901 // Returns a matcher that matches the value of a absl::any type variable.
7902 template <typename T>
7903 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
7904  const Matcher<const T&>& matcher) {
7905  return MakePolymorphicMatcher(
7906  internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
7907 }
7908 
7909 // Returns a matcher that matches the value of a variant<> type variable.
7910 // The matcher implementation uses ADL to find the holds_alternative and get
7911 // functions.
7912 // It is compatible with std::variant.
7913 template <typename T>
7914 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
7915  const Matcher<const T&>& matcher) {
7916  return MakePolymorphicMatcher(
7917  internal::variant_matcher::VariantMatcher<T>(matcher));
7918 }
7919 
7920 #if GTEST_HAS_EXCEPTIONS
7921 
7922 // Anything inside the `internal` namespace is internal to the implementation
7923 // and must not be used in user code!
7924 namespace internal {
7925 
7926 class WithWhatMatcherImpl {
7927  public:
7928  WithWhatMatcherImpl(Matcher<std::string> matcher)
7929  : matcher_(std::move(matcher)) {}
7930 
7931  void DescribeTo(std::ostream* os) const {
7932  *os << "contains .what() that ";
7933  matcher_.DescribeTo(os);
7934  }
7935 
7936  void DescribeNegationTo(std::ostream* os) const {
7937  *os << "contains .what() that does not ";
7938  matcher_.DescribeTo(os);
7939  }
7940 
7941  template <typename Err>
7942  bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
7943  *listener << "which contains .what() that ";
7944  return matcher_.MatchAndExplain(err.what(), listener);
7945  }
7946 
7947  private:
7948  const Matcher<std::string> matcher_;
7949 };
7950 
7951 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
7952  Matcher<std::string> m) {
7953  return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
7954 }
7955 
7956 template <typename Err>
7957 class ExceptionMatcherImpl {
7958  class NeverThrown {
7959  public:
7960  const char* what() const noexcept {
7961  return "this exception should never be thrown";
7962  }
7963  };
7964 
7965  // If the matchee raises an exception of a wrong type, we'd like to
7966  // catch it and print its message and type. To do that, we add an additional
7967  // catch clause:
7968  //
7969  // try { ... }
7970  // catch (const Err&) { /* an expected exception */ }
7971  // catch (const std::exception&) { /* exception of a wrong type */ }
7972  //
7973  // However, if the `Err` itself is `std::exception`, we'd end up with two
7974  // identical `catch` clauses:
7975  //
7976  // try { ... }
7977  // catch (const std::exception&) { /* an expected exception */ }
7978  // catch (const std::exception&) { /* exception of a wrong type */ }
7979  //
7980  // This can cause a warning or an error in some compilers. To resolve
7981  // the issue, we use a fake error type whenever `Err` is `std::exception`:
7982  //
7983  // try { ... }
7984  // catch (const std::exception&) { /* an expected exception */ }
7985  // catch (const NeverThrown&) { /* exception of a wrong type */ }
7986  using DefaultExceptionType = typename std::conditional<
7987  std::is_same<typename std::remove_cv<
7988  typename std::remove_reference<Err>::type>::type,
7989  std::exception>::value,
7990  const NeverThrown&, const std::exception&>::type;
7991 
7992  public:
7993  ExceptionMatcherImpl(Matcher<const Err&> matcher)
7994  : matcher_(std::move(matcher)) {}
7995 
7996  void DescribeTo(std::ostream* os) const {
7997  *os << "throws an exception which is a " << GetTypeName<Err>();
7998  *os << " which ";
7999  matcher_.DescribeTo(os);
8000  }
8001 
8002  void DescribeNegationTo(std::ostream* os) const {
8003  *os << "throws an exception which is not a " << GetTypeName<Err>();
8004  *os << " which ";
8005  matcher_.DescribeNegationTo(os);
8006  }
8007 
8008  template <typename T>
8009  bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
8010  try {
8011  (void)(std::forward<T>(x)());
8012  } catch (const Err& err) {
8013  *listener << "throws an exception which is a " << GetTypeName<Err>();
8014  *listener << " ";
8015  return matcher_.MatchAndExplain(err, listener);
8016  } catch (DefaultExceptionType err) {
8017 #if GTEST_HAS_RTTI
8018  *listener << "throws an exception of type " << GetTypeName(typeid(err));
8019  *listener << " ";
8020 #else
8021  *listener << "throws an std::exception-derived type ";
8022 #endif
8023  *listener << "with description \"" << err.what() << "\"";
8024  return false;
8025  } catch (...) {
8026  *listener << "throws an exception of an unknown type";
8027  return false;
8028  }
8029 
8030  *listener << "does not throw any exception";
8031  return false;
8032  }
8033 
8034  private:
8035  const Matcher<const Err&> matcher_;
8036 };
8037 
8038 } // namespace internal
8039 
8040 // Throws()
8041 // Throws(exceptionMatcher)
8042 // ThrowsMessage(messageMatcher)
8043 //
8044 // This matcher accepts a callable and verifies that when invoked, it throws
8045 // an exception with the given type and properties.
8046 //
8047 // Examples:
8048 //
8049 // EXPECT_THAT(
8050 // []() { throw std::runtime_error("message"); },
8051 // Throws<std::runtime_error>());
8052 //
8053 // EXPECT_THAT(
8054 // []() { throw std::runtime_error("message"); },
8055 // ThrowsMessage<std::runtime_error>(HasSubstr("message")));
8056 //
8057 // EXPECT_THAT(
8058 // []() { throw std::runtime_error("message"); },
8059 // Throws<std::runtime_error>(
8060 // Property(&std::runtime_error::what, HasSubstr("message"))));
8061 
8062 template <typename Err>
8063 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
8064  return MakePolymorphicMatcher(
8065  internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
8066 }
8067 
8068 template <typename Err, typename ExceptionMatcher>
8069 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
8070  const ExceptionMatcher& exception_matcher) {
8071  // Using matcher cast allows users to pass a matcher of a more broad type.
8072  // For example user may want to pass Matcher<std::exception>
8073  // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
8074  return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
8075  SafeMatcherCast<const Err&>(exception_matcher)));
8076 }
8077 
8078 template <typename Err, typename MessageMatcher>
8079 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
8080  MessageMatcher&& message_matcher) {
8081  static_assert(std::is_base_of<std::exception, Err>::value,
8082  "expected an std::exception-derived type");
8083  return Throws<Err>(internal::WithWhat(
8084  MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
8085 }
8086 
8087 #endif // GTEST_HAS_EXCEPTIONS
8088 
8089 // These macros allow using matchers to check values in Google Test
8090 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
8091 // succeed if and only if the value matches the matcher. If the assertion
8092 // fails, the value and the description of the matcher will be printed.
8093 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
8094  ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8095 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
8096  ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8097 
8098 // MATCHER* macroses itself are listed below.
8099 #define MATCHER(name, description) \
8100  class name##Matcher \
8101  : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
8102  public: \
8103  template <typename arg_type> \
8104  class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
8105  public: \
8106  gmock_Impl() {} \
8107  bool MatchAndExplain( \
8108  const arg_type& arg, \
8109  ::testing::MatchResultListener* result_listener) const override; \
8110  void DescribeTo(::std::ostream* gmock_os) const override { \
8111  *gmock_os << FormatDescription(false); \
8112  } \
8113  void DescribeNegationTo(::std::ostream* gmock_os) const override { \
8114  *gmock_os << FormatDescription(true); \
8115  } \
8116  \
8117  private: \
8118  ::std::string FormatDescription(bool negation) const { \
8119  ::std::string gmock_description = (description); \
8120  if (!gmock_description.empty()) { \
8121  return gmock_description; \
8122  } \
8123  return ::testing::internal::FormatMatcherDescription(negation, #name, \
8124  {}); \
8125  } \
8126  }; \
8127  }; \
8128  GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
8129  template <typename arg_type> \
8130  bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
8131  const arg_type& arg, \
8132  ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
8133  const
8134 
8135 #define MATCHER_P(name, p0, description) \
8136  GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
8137 #define MATCHER_P2(name, p0, p1, description) \
8138  GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
8139 #define MATCHER_P3(name, p0, p1, p2, description) \
8140  GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
8141 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
8142  GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
8143 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
8144  GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
8145  (p0, p1, p2, p3, p4))
8146 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
8147  GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
8148  (p0, p1, p2, p3, p4, p5))
8149 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
8150  GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
8151  (p0, p1, p2, p3, p4, p5, p6))
8152 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
8153  GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
8154  (p0, p1, p2, p3, p4, p5, p6, p7))
8155 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
8156  GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
8157  (p0, p1, p2, p3, p4, p5, p6, p7, p8))
8158 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
8159  GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
8160  (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
8161 
8162 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
8163  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
8164  class full_name : public ::testing::internal::MatcherBaseImpl< \
8165  full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
8166  public: \
8167  using full_name::MatcherBaseImpl::MatcherBaseImpl; \
8168  template <typename arg_type> \
8169  class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
8170  public: \
8171  explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
8172  : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
8173  bool MatchAndExplain( \
8174  const arg_type& arg, \
8175  ::testing::MatchResultListener* result_listener) const override; \
8176  void DescribeTo(::std::ostream* gmock_os) const override { \
8177  *gmock_os << FormatDescription(false); \
8178  } \
8179  void DescribeNegationTo(::std::ostream* gmock_os) const override { \
8180  *gmock_os << FormatDescription(true); \
8181  } \
8182  GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
8183  \
8184  private: \
8185  ::std::string FormatDescription(bool negation) const { \
8186  ::std::string gmock_description = (description); \
8187  if (!gmock_description.empty()) { \
8188  return gmock_description; \
8189  } \
8190  return ::testing::internal::FormatMatcherDescription( \
8191  negation, #name, \
8192  ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
8193  ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
8194  GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
8195  } \
8196  }; \
8197  }; \
8198  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
8199  inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
8200  GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
8201  return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
8202  GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
8203  } \
8204  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
8205  template <typename arg_type> \
8206  bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
8207  arg_type>::MatchAndExplain(const arg_type& arg, \
8208  ::testing::MatchResultListener* \
8209  result_listener GTEST_ATTRIBUTE_UNUSED_) \
8210  const
8211 
8212 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
8213  GMOCK_PP_TAIL( \
8214  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
8215 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
8216  , typename arg##_type
8217 
8218 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
8219  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
8220 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
8221  , arg##_type
8222 
8223 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
8224  GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
8225  GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
8226 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
8227  , arg##_type gmock_p##i
8228 
8229 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
8230  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
8231 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
8232  , arg(::std::forward<arg##_type>(gmock_p##i))
8233 
8234 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
8235  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
8236 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
8237  const arg##_type arg;
8238 
8239 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
8240  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
8241 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
8242 
8243 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
8244  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
8245 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
8246  , gmock_p##i
8247 
8248 // To prevent ADL on certain functions we put them on a separate namespace.
8249 using namespace no_adl; // NOLINT
8250 
8251 } // namespace testing
8252 
8253 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
8254 
8255 // Include any custom callback matchers added by the local installation.
8256 // We must include this header at the end to make sure it can use the
8257 // declarations from this file.
8258 // Copyright 2015, Google Inc.
8259 // All rights reserved.
8260 //
8261 // Redistribution and use in source and binary forms, with or without
8262 // modification, are permitted provided that the following conditions are
8263 // met:
8264 //
8265 // * Redistributions of source code must retain the above copyright
8266 // notice, this list of conditions and the following disclaimer.
8267 // * Redistributions in binary form must reproduce the above
8268 // copyright notice, this list of conditions and the following disclaimer
8269 // in the documentation and/or other materials provided with the
8270 // distribution.
8271 // * Neither the name of Google Inc. nor the names of its
8272 // contributors may be used to endorse or promote products derived from
8273 // this software without specific prior written permission.
8274 //
8275 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
8276 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
8277 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
8278 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
8279 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
8280 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
8281 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
8282 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
8283 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
8284 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
8285 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8286 //
8287 // Injection point for custom user configurations. See README for details
8288 //
8289 // GOOGLETEST_CM0002 DO NOT DELETE
8290 
8291 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8292 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8293 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8294 
8295 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
8296 
8297 #if GTEST_HAS_EXCEPTIONS
8298 # include <stdexcept> // NOLINT
8299 #endif
8300 
8301 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
8302 /* class A needs to have dll-interface to be used by clients of class B */)
8303 
8304 namespace testing {
8305 
8306 // An abstract handle of an expectation.
8307 class Expectation;
8308 
8309 // A set of expectation handles.
8310 class ExpectationSet;
8311 
8312 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
8313 // and MUST NOT BE USED IN USER CODE!!!
8314 namespace internal {
8315 
8316 // Implements a mock function.
8317 template <typename F> class FunctionMocker;
8318 
8319 // Base class for expectations.
8320 class ExpectationBase;
8321 
8322 // Implements an expectation.
8323 template <typename F> class TypedExpectation;
8324 
8325 // Helper class for testing the Expectation class template.
8326 class ExpectationTester;
8327 
8328 // Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
8329 template <typename MockClass>
8330 class NiceMockImpl;
8331 template <typename MockClass>
8332 class StrictMockImpl;
8333 template <typename MockClass>
8334 class NaggyMockImpl;
8335 
8336 // Protects the mock object registry (in class Mock), all function
8337 // mockers, and all expectations.
8338 //
8339 // The reason we don't use more fine-grained protection is: when a
8340 // mock function Foo() is called, it needs to consult its expectations
8341 // to see which one should be picked. If another thread is allowed to
8342 // call a mock function (either Foo() or a different one) at the same
8343 // time, it could affect the "retired" attributes of Foo()'s
8344 // expectations when InSequence() is used, and thus affect which
8345 // expectation gets picked. Therefore, we sequence all mock function
8346 // calls to ensure the integrity of the mock objects' states.
8347 GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
8348 
8349 // Untyped base class for ActionResultHolder<R>.
8350 class UntypedActionResultHolderBase;
8351 
8352 // Abstract base class of FunctionMocker. This is the
8353 // type-agnostic part of the function mocker interface. Its pure
8354 // virtual methods are implemented by FunctionMocker.
8355 class GTEST_API_ UntypedFunctionMockerBase {
8356  public:
8357  UntypedFunctionMockerBase();
8358  virtual ~UntypedFunctionMockerBase();
8359 
8360  // Verifies that all expectations on this mock function have been
8361  // satisfied. Reports one or more Google Test non-fatal failures
8362  // and returns false if not.
8363  bool VerifyAndClearExpectationsLocked()
8364  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8365 
8366  // Clears the ON_CALL()s set on this mock function.
8367  virtual void ClearDefaultActionsLocked()
8368  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
8369 
8370  // In all of the following Untyped* functions, it's the caller's
8371  // responsibility to guarantee the correctness of the arguments'
8372  // types.
8373 
8374  // Performs the default action with the given arguments and returns
8375  // the action's result. The call description string will be used in
8376  // the error message to describe the call in the case the default
8377  // action fails.
8378  // L = *
8379  virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
8380  void* untyped_args, const std::string& call_description) const = 0;
8381 
8382  // Performs the given action with the given arguments and returns
8383  // the action's result.
8384  // L = *
8385  virtual UntypedActionResultHolderBase* UntypedPerformAction(
8386  const void* untyped_action, void* untyped_args) const = 0;
8387 
8388  // Writes a message that the call is uninteresting (i.e. neither
8389  // explicitly expected nor explicitly unexpected) to the given
8390  // ostream.
8391  virtual void UntypedDescribeUninterestingCall(
8392  const void* untyped_args,
8393  ::std::ostream* os) const
8394  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8395 
8396  // Returns the expectation that matches the given function arguments
8397  // (or NULL is there's no match); when a match is found,
8398  // untyped_action is set to point to the action that should be
8399  // performed (or NULL if the action is "do default"), and
8400  // is_excessive is modified to indicate whether the call exceeds the
8401  // expected number.
8402  virtual const ExpectationBase* UntypedFindMatchingExpectation(
8403  const void* untyped_args,
8404  const void** untyped_action, bool* is_excessive,
8405  ::std::ostream* what, ::std::ostream* why)
8406  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8407 
8408  // Prints the given function arguments to the ostream.
8409  virtual void UntypedPrintArgs(const void* untyped_args,
8410  ::std::ostream* os) const = 0;
8411 
8412  // Sets the mock object this mock method belongs to, and registers
8413  // this information in the global mock registry. Will be called
8414  // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
8415  // method.
8416  void RegisterOwner(const void* mock_obj)
8417  GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8418 
8419  // Sets the mock object this mock method belongs to, and sets the
8420  // name of the mock function. Will be called upon each invocation
8421  // of this mock function.
8422  void SetOwnerAndName(const void* mock_obj, const char* name)
8423  GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8424 
8425  // Returns the mock object this mock method belongs to. Must be
8426  // called after RegisterOwner() or SetOwnerAndName() has been
8427  // called.
8428  const void* MockObject() const
8429  GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8430 
8431  // Returns the name of this mock method. Must be called after
8432  // SetOwnerAndName() has been called.
8433  const char* Name() const
8434  GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8435 
8436  // Returns the result of invoking this mock function with the given
8437  // arguments. This function can be safely called from multiple
8438  // threads concurrently. The caller is responsible for deleting the
8439  // result.
8440  UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
8441  GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8442 
8443  protected:
8444  typedef std::vector<const void*> UntypedOnCallSpecs;
8445 
8446  using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
8447 
8448  // Returns an Expectation object that references and co-owns exp,
8449  // which must be an expectation on this mock function.
8450  Expectation GetHandleOf(ExpectationBase* exp);
8451 
8452  // Address of the mock object this mock method belongs to. Only
8453  // valid after this mock method has been called or
8454  // ON_CALL/EXPECT_CALL has been invoked on it.
8455  const void* mock_obj_; // Protected by g_gmock_mutex.
8456 
8457  // Name of the function being mocked. Only valid after this mock
8458  // method has been called.
8459  const char* name_; // Protected by g_gmock_mutex.
8460 
8461  // All default action specs for this function mocker.
8462  UntypedOnCallSpecs untyped_on_call_specs_;
8463 
8464  // All expectations for this function mocker.
8465  //
8466  // It's undefined behavior to interleave expectations (EXPECT_CALLs
8467  // or ON_CALLs) and mock function calls. Also, the order of
8468  // expectations is important. Therefore it's a logic race condition
8469  // to read/write untyped_expectations_ concurrently. In order for
8470  // tools like tsan to catch concurrent read/write accesses to
8471  // untyped_expectations, we deliberately leave accesses to it
8472  // unprotected.
8473  UntypedExpectations untyped_expectations_;
8474 }; // class UntypedFunctionMockerBase
8475 
8476 // Untyped base class for OnCallSpec<F>.
8477 class UntypedOnCallSpecBase {
8478  public:
8479  // The arguments are the location of the ON_CALL() statement.
8480  UntypedOnCallSpecBase(const char* a_file, int a_line)
8481  : file_(a_file), line_(a_line), last_clause_(kNone) {}
8482 
8483  // Where in the source file was the default action spec defined?
8484  const char* file() const { return file_; }
8485  int line() const { return line_; }
8486 
8487  protected:
8488  // Gives each clause in the ON_CALL() statement a name.
8489  enum Clause {
8490  // Do not change the order of the enum members! The run-time
8491  // syntax checking relies on it.
8492  kNone,
8493  kWith,
8494  kWillByDefault
8495  };
8496 
8497  // Asserts that the ON_CALL() statement has a certain property.
8498  void AssertSpecProperty(bool property,
8499  const std::string& failure_message) const {
8500  Assert(property, file_, line_, failure_message);
8501  }
8502 
8503  // Expects that the ON_CALL() statement has a certain property.
8504  void ExpectSpecProperty(bool property,
8505  const std::string& failure_message) const {
8506  Expect(property, file_, line_, failure_message);
8507  }
8508 
8509  const char* file_;
8510  int line_;
8511 
8512  // The last clause in the ON_CALL() statement as seen so far.
8513  // Initially kNone and changes as the statement is parsed.
8514  Clause last_clause_;
8515 }; // class UntypedOnCallSpecBase
8516 
8517 // This template class implements an ON_CALL spec.
8518 template <typename F>
8519 class OnCallSpec : public UntypedOnCallSpecBase {
8520  public:
8521  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
8522  typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
8523 
8524  // Constructs an OnCallSpec object from the information inside
8525  // the parenthesis of an ON_CALL() statement.
8526  OnCallSpec(const char* a_file, int a_line,
8527  const ArgumentMatcherTuple& matchers)
8528  : UntypedOnCallSpecBase(a_file, a_line),
8529  matchers_(matchers),
8530  // By default, extra_matcher_ should match anything. However,
8531  // we cannot initialize it with _ as that causes ambiguity between
8532  // Matcher's copy and move constructor for some argument types.
8533  extra_matcher_(A<const ArgumentTuple&>()) {}
8534 
8535  // Implements the .With() clause.
8536  OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
8537  // Makes sure this is called at most once.
8538  ExpectSpecProperty(last_clause_ < kWith,
8539  ".With() cannot appear "
8540  "more than once in an ON_CALL().");
8541  last_clause_ = kWith;
8542 
8543  extra_matcher_ = m;
8544  return *this;
8545  }
8546 
8547  // Implements the .WillByDefault() clause.
8548  OnCallSpec& WillByDefault(const Action<F>& action) {
8549  ExpectSpecProperty(last_clause_ < kWillByDefault,
8550  ".WillByDefault() must appear "
8551  "exactly once in an ON_CALL().");
8552  last_clause_ = kWillByDefault;
8553 
8554  ExpectSpecProperty(!action.IsDoDefault(),
8555  "DoDefault() cannot be used in ON_CALL().");
8556  action_ = action;
8557  return *this;
8558  }
8559 
8560  // Returns true if and only if the given arguments match the matchers.
8561  bool Matches(const ArgumentTuple& args) const {
8562  return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
8563  }
8564 
8565  // Returns the action specified by the user.
8566  const Action<F>& GetAction() const {
8567  AssertSpecProperty(last_clause_ == kWillByDefault,
8568  ".WillByDefault() must appear exactly "
8569  "once in an ON_CALL().");
8570  return action_;
8571  }
8572 
8573  private:
8574  // The information in statement
8575  //
8576  // ON_CALL(mock_object, Method(matchers))
8577  // .With(multi-argument-matcher)
8578  // .WillByDefault(action);
8579  //
8580  // is recorded in the data members like this:
8581  //
8582  // source file that contains the statement => file_
8583  // line number of the statement => line_
8584  // matchers => matchers_
8585  // multi-argument-matcher => extra_matcher_
8586  // action => action_
8587  ArgumentMatcherTuple matchers_;
8588  Matcher<const ArgumentTuple&> extra_matcher_;
8589  Action<F> action_;
8590 }; // class OnCallSpec
8591 
8592 // Possible reactions on uninteresting calls.
8593 enum CallReaction {
8594  kAllow,
8595  kWarn,
8596  kFail,
8597 };
8598 
8599 } // namespace internal
8600 
8601 // Utilities for manipulating mock objects.
8602 class GTEST_API_ Mock {
8603  public:
8604  // The following public methods can be called concurrently.
8605 
8606  // Tells Google Mock to ignore mock_obj when checking for leaked
8607  // mock objects.
8608  static void AllowLeak(const void* mock_obj)
8609  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8610 
8611  // Verifies and clears all expectations on the given mock object.
8612  // If the expectations aren't satisfied, generates one or more
8613  // Google Test non-fatal failures and returns false.
8614  static bool VerifyAndClearExpectations(void* mock_obj)
8615  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8616 
8617  // Verifies all expectations on the given mock object and clears its
8618  // default actions and expectations. Returns true if and only if the
8619  // verification was successful.
8620  static bool VerifyAndClear(void* mock_obj)
8621  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8622 
8623  // Returns whether the mock was created as a naggy mock (default)
8624  static bool IsNaggy(void* mock_obj)
8625  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8626  // Returns whether the mock was created as a nice mock
8627  static bool IsNice(void* mock_obj)
8628  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8629  // Returns whether the mock was created as a strict mock
8630  static bool IsStrict(void* mock_obj)
8631  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8632 
8633  private:
8634  friend class internal::UntypedFunctionMockerBase;
8635 
8636  // Needed for a function mocker to register itself (so that we know
8637  // how to clear a mock object).
8638  template <typename F>
8639  friend class internal::FunctionMocker;
8640 
8641  template <typename MockClass>
8642  friend class internal::NiceMockImpl;
8643  template <typename MockClass>
8644  friend class internal::NaggyMockImpl;
8645  template <typename MockClass>
8646  friend class internal::StrictMockImpl;
8647 
8648  // Tells Google Mock to allow uninteresting calls on the given mock
8649  // object.
8650  static void AllowUninterestingCalls(uintptr_t mock_obj)
8651  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8652 
8653  // Tells Google Mock to warn the user about uninteresting calls on
8654  // the given mock object.
8655  static void WarnUninterestingCalls(uintptr_t mock_obj)
8656  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8657 
8658  // Tells Google Mock to fail uninteresting calls on the given mock
8659  // object.
8660  static void FailUninterestingCalls(uintptr_t mock_obj)
8661  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8662 
8663  // Tells Google Mock the given mock object is being destroyed and
8664  // its entry in the call-reaction table should be removed.
8665  static void UnregisterCallReaction(uintptr_t mock_obj)
8666  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8667 
8668  // Returns the reaction Google Mock will have on uninteresting calls
8669  // made on the given mock object.
8670  static internal::CallReaction GetReactionOnUninterestingCalls(
8671  const void* mock_obj)
8672  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8673 
8674  // Verifies that all expectations on the given mock object have been
8675  // satisfied. Reports one or more Google Test non-fatal failures
8676  // and returns false if not.
8677  static bool VerifyAndClearExpectationsLocked(void* mock_obj)
8678  GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8679 
8680  // Clears all ON_CALL()s set on the given mock object.
8681  static void ClearDefaultActionsLocked(void* mock_obj)
8682  GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8683 
8684  // Registers a mock object and a mock method it owns.
8685  static void Register(
8686  const void* mock_obj,
8687  internal::UntypedFunctionMockerBase* mocker)
8688  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8689 
8690  // Tells Google Mock where in the source code mock_obj is used in an
8691  // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
8692  // information helps the user identify which object it is.
8693  static void RegisterUseByOnCallOrExpectCall(
8694  const void* mock_obj, const char* file, int line)
8695  GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8696 
8697  // Unregisters a mock method; removes the owning mock object from
8698  // the registry when the last mock method associated with it has
8699  // been unregistered. This is called only in the destructor of
8700  // FunctionMocker.
8701  static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
8702  GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8703 }; // class Mock
8704 
8705 // An abstract handle of an expectation. Useful in the .After()
8706 // clause of EXPECT_CALL() for setting the (partial) order of
8707 // expectations. The syntax:
8708 //
8709 // Expectation e1 = EXPECT_CALL(...)...;
8710 // EXPECT_CALL(...).After(e1)...;
8711 //
8712 // sets two expectations where the latter can only be matched after
8713 // the former has been satisfied.
8714 //
8715 // Notes:
8716 // - This class is copyable and has value semantics.
8717 // - Constness is shallow: a const Expectation object itself cannot
8718 // be modified, but the mutable methods of the ExpectationBase
8719 // object it references can be called via expectation_base().
8720 
8721 class GTEST_API_ Expectation {
8722  public:
8723  // Constructs a null object that doesn't reference any expectation.
8724  Expectation();
8725  Expectation(Expectation&&) = default;
8726  Expectation(const Expectation&) = default;
8727  Expectation& operator=(Expectation&&) = default;
8728  Expectation& operator=(const Expectation&) = default;
8729  ~Expectation();
8730 
8731  // This single-argument ctor must not be explicit, in order to support the
8732  // Expectation e = EXPECT_CALL(...);
8733  // syntax.
8734  //
8735  // A TypedExpectation object stores its pre-requisites as
8736  // Expectation objects, and needs to call the non-const Retire()
8737  // method on the ExpectationBase objects they reference. Therefore
8738  // Expectation must receive a *non-const* reference to the
8739  // ExpectationBase object.
8740  Expectation(internal::ExpectationBase& exp); // NOLINT
8741 
8742  // The compiler-generated copy ctor and operator= work exactly as
8743  // intended, so we don't need to define our own.
8744 
8745  // Returns true if and only if rhs references the same expectation as this
8746  // object does.
8747  bool operator==(const Expectation& rhs) const {
8748  return expectation_base_ == rhs.expectation_base_;
8749  }
8750 
8751  bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
8752 
8753  private:
8754  friend class ExpectationSet;
8755  friend class Sequence;
8756  friend class ::testing::internal::ExpectationBase;
8757  friend class ::testing::internal::UntypedFunctionMockerBase;
8758 
8759  template <typename F>
8760  friend class ::testing::internal::FunctionMocker;
8761 
8762  template <typename F>
8763  friend class ::testing::internal::TypedExpectation;
8764 
8765  // This comparator is needed for putting Expectation objects into a set.
8766  class Less {
8767  public:
8768  bool operator()(const Expectation& lhs, const Expectation& rhs) const {
8769  return lhs.expectation_base_.get() < rhs.expectation_base_.get();
8770  }
8771  };
8772 
8773  typedef ::std::set<Expectation, Less> Set;
8774 
8775  Expectation(
8776  const std::shared_ptr<internal::ExpectationBase>& expectation_base);
8777 
8778  // Returns the expectation this object references.
8779  const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
8780  return expectation_base_;
8781  }
8782 
8783  // A shared_ptr that co-owns the expectation this handle references.
8784  std::shared_ptr<internal::ExpectationBase> expectation_base_;
8785 };
8786 
8787 // A set of expectation handles. Useful in the .After() clause of
8788 // EXPECT_CALL() for setting the (partial) order of expectations. The
8789 // syntax:
8790 //
8791 // ExpectationSet es;
8792 // es += EXPECT_CALL(...)...;
8793 // es += EXPECT_CALL(...)...;
8794 // EXPECT_CALL(...).After(es)...;
8795 //
8796 // sets three expectations where the last one can only be matched
8797 // after the first two have both been satisfied.
8798 //
8799 // This class is copyable and has value semantics.
8800 class ExpectationSet {
8801  public:
8802  // A bidirectional iterator that can read a const element in the set.
8803  typedef Expectation::Set::const_iterator const_iterator;
8804 
8805  // An object stored in the set. This is an alias of Expectation.
8806  typedef Expectation::Set::value_type value_type;
8807 
8808  // Constructs an empty set.
8809  ExpectationSet() {}
8810 
8811  // This single-argument ctor must not be explicit, in order to support the
8812  // ExpectationSet es = EXPECT_CALL(...);
8813  // syntax.
8814  ExpectationSet(internal::ExpectationBase& exp) { // NOLINT
8815  *this += Expectation(exp);
8816  }
8817 
8818  // This single-argument ctor implements implicit conversion from
8819  // Expectation and thus must not be explicit. This allows either an
8820  // Expectation or an ExpectationSet to be used in .After().
8821  ExpectationSet(const Expectation& e) { // NOLINT
8822  *this += e;
8823  }
8824 
8825  // The compiler-generator ctor and operator= works exactly as
8826  // intended, so we don't need to define our own.
8827 
8828  // Returns true if and only if rhs contains the same set of Expectation
8829  // objects as this does.
8830  bool operator==(const ExpectationSet& rhs) const {
8831  return expectations_ == rhs.expectations_;
8832  }
8833 
8834  bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
8835 
8836  // Implements the syntax
8837  // expectation_set += EXPECT_CALL(...);
8838  ExpectationSet& operator+=(const Expectation& e) {
8839  expectations_.insert(e);
8840  return *this;
8841  }
8842 
8843  int size() const { return static_cast<int>(expectations_.size()); }
8844 
8845  const_iterator begin() const { return expectations_.begin(); }
8846  const_iterator end() const { return expectations_.end(); }
8847 
8848  private:
8849  Expectation::Set expectations_;
8850 };
8851 
8852 
8853 // Sequence objects are used by a user to specify the relative order
8854 // in which the expectations should match. They are copyable (we rely
8855 // on the compiler-defined copy constructor and assignment operator).
8856 class GTEST_API_ Sequence {
8857  public:
8858  // Constructs an empty sequence.
8859  Sequence() : last_expectation_(new Expectation) {}
8860 
8861  // Adds an expectation to this sequence. The caller must ensure
8862  // that no other thread is accessing this Sequence object.
8863  void AddExpectation(const Expectation& expectation) const;
8864 
8865  private:
8866  // The last expectation in this sequence.
8867  std::shared_ptr<Expectation> last_expectation_;
8868 }; // class Sequence
8869 
8870 // An object of this type causes all EXPECT_CALL() statements
8871 // encountered in its scope to be put in an anonymous sequence. The
8872 // work is done in the constructor and destructor. You should only
8873 // create an InSequence object on the stack.
8874 //
8875 // The sole purpose for this class is to support easy definition of
8876 // sequential expectations, e.g.
8877 //
8878 // {
8879 // InSequence dummy; // The name of the object doesn't matter.
8880 //
8881 // // The following expectations must match in the order they appear.
8882 // EXPECT_CALL(a, Bar())...;
8883 // EXPECT_CALL(a, Baz())...;
8884 // ...
8885 // EXPECT_CALL(b, Xyz())...;
8886 // }
8887 //
8888 // You can create InSequence objects in multiple threads, as long as
8889 // they are used to affect different mock objects. The idea is that
8890 // each thread can create and set up its own mocks as if it's the only
8891 // thread. However, for clarity of your tests we recommend you to set
8892 // up mocks in the main thread unless you have a good reason not to do
8893 // so.
8894 class GTEST_API_ InSequence {
8895  public:
8896  InSequence();
8897  ~InSequence();
8898  private:
8899  bool sequence_created_;
8900 
8901  GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT
8902 } GTEST_ATTRIBUTE_UNUSED_;
8903 
8904 namespace internal {
8905 
8906 // Points to the implicit sequence introduced by a living InSequence
8907 // object (if any) in the current thread or NULL.
8908 GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
8909 
8910 // Base class for implementing expectations.
8911 //
8912 // There are two reasons for having a type-agnostic base class for
8913 // Expectation:
8914 //
8915 // 1. We need to store collections of expectations of different
8916 // types (e.g. all pre-requisites of a particular expectation, all
8917 // expectations in a sequence). Therefore these expectation objects
8918 // must share a common base class.
8919 //
8920 // 2. We can avoid binary code bloat by moving methods not depending
8921 // on the template argument of Expectation to the base class.
8922 //
8923 // This class is internal and mustn't be used by user code directly.
8924 class GTEST_API_ ExpectationBase {
8925  public:
8926  // source_text is the EXPECT_CALL(...) source that created this Expectation.
8927  ExpectationBase(const char* file, int line, const std::string& source_text);
8928 
8929  virtual ~ExpectationBase();
8930 
8931  // Where in the source file was the expectation spec defined?
8932  const char* file() const { return file_; }
8933  int line() const { return line_; }
8934  const char* source_text() const { return source_text_.c_str(); }
8935  // Returns the cardinality specified in the expectation spec.
8936  const Cardinality& cardinality() const { return cardinality_; }
8937 
8938  // Describes the source file location of this expectation.
8939  void DescribeLocationTo(::std::ostream* os) const {
8940  *os << FormatFileLocation(file(), line()) << " ";
8941  }
8942 
8943  // Describes how many times a function call matching this
8944  // expectation has occurred.
8945  void DescribeCallCountTo(::std::ostream* os) const
8946  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8947 
8948  // If this mock method has an extra matcher (i.e. .With(matcher)),
8949  // describes it to the ostream.
8950  virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
8951 
8952  protected:
8953  friend class ::testing::Expectation;
8954  friend class UntypedFunctionMockerBase;
8955 
8956  enum Clause {
8957  // Don't change the order of the enum members!
8958  kNone,
8959  kWith,
8960  kTimes,
8961  kInSequence,
8962  kAfter,
8963  kWillOnce,
8964  kWillRepeatedly,
8965  kRetiresOnSaturation
8966  };
8967 
8968  typedef std::vector<const void*> UntypedActions;
8969 
8970  // Returns an Expectation object that references and co-owns this
8971  // expectation.
8972  virtual Expectation GetHandle() = 0;
8973 
8974  // Asserts that the EXPECT_CALL() statement has the given property.
8975  void AssertSpecProperty(bool property,
8976  const std::string& failure_message) const {
8977  Assert(property, file_, line_, failure_message);
8978  }
8979 
8980  // Expects that the EXPECT_CALL() statement has the given property.
8981  void ExpectSpecProperty(bool property,
8982  const std::string& failure_message) const {
8983  Expect(property, file_, line_, failure_message);
8984  }
8985 
8986  // Explicitly specifies the cardinality of this expectation. Used
8987  // by the subclasses to implement the .Times() clause.
8988  void SpecifyCardinality(const Cardinality& cardinality);
8989 
8990  // Returns true if and only if the user specified the cardinality
8991  // explicitly using a .Times().
8992  bool cardinality_specified() const { return cardinality_specified_; }
8993 
8994  // Sets the cardinality of this expectation spec.
8995  void set_cardinality(const Cardinality& a_cardinality) {
8996  cardinality_ = a_cardinality;
8997  }
8998 
8999  // The following group of methods should only be called after the
9000  // EXPECT_CALL() statement, and only when g_gmock_mutex is held by
9001  // the current thread.
9002 
9003  // Retires all pre-requisites of this expectation.
9004  void RetireAllPreRequisites()
9005  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9006 
9007  // Returns true if and only if this expectation is retired.
9008  bool is_retired() const
9009  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9010  g_gmock_mutex.AssertHeld();
9011  return retired_;
9012  }
9013 
9014  // Retires this expectation.
9015  void Retire()
9016  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9017  g_gmock_mutex.AssertHeld();
9018  retired_ = true;
9019  }
9020 
9021  // Returns true if and only if this expectation is satisfied.
9022  bool IsSatisfied() const
9023  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9024  g_gmock_mutex.AssertHeld();
9025  return cardinality().IsSatisfiedByCallCount(call_count_);
9026  }
9027 
9028  // Returns true if and only if this expectation is saturated.
9029  bool IsSaturated() const
9030  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9031  g_gmock_mutex.AssertHeld();
9032  return cardinality().IsSaturatedByCallCount(call_count_);
9033  }
9034 
9035  // Returns true if and only if this expectation is over-saturated.
9036  bool IsOverSaturated() const
9037  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9038  g_gmock_mutex.AssertHeld();
9039  return cardinality().IsOverSaturatedByCallCount(call_count_);
9040  }
9041 
9042  // Returns true if and only if all pre-requisites of this expectation are
9043  // satisfied.
9044  bool AllPrerequisitesAreSatisfied() const
9045  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9046 
9047  // Adds unsatisfied pre-requisites of this expectation to 'result'.
9048  void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
9049  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9050 
9051  // Returns the number this expectation has been invoked.
9052  int call_count() const
9053  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9054  g_gmock_mutex.AssertHeld();
9055  return call_count_;
9056  }
9057 
9058  // Increments the number this expectation has been invoked.
9059  void IncrementCallCount()
9060  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9061  g_gmock_mutex.AssertHeld();
9062  call_count_++;
9063  }
9064 
9065  // Checks the action count (i.e. the number of WillOnce() and
9066  // WillRepeatedly() clauses) against the cardinality if this hasn't
9067  // been done before. Prints a warning if there are too many or too
9068  // few actions.
9069  void CheckActionCountIfNotDone() const
9070  GTEST_LOCK_EXCLUDED_(mutex_);
9071 
9072  friend class ::testing::Sequence;
9073  friend class ::testing::internal::ExpectationTester;
9074 
9075  template <typename Function>
9076  friend class TypedExpectation;
9077 
9078  // Implements the .Times() clause.
9079  void UntypedTimes(const Cardinality& a_cardinality);
9080 
9081  // This group of fields are part of the spec and won't change after
9082  // an EXPECT_CALL() statement finishes.
9083  const char* file_; // The file that contains the expectation.
9084  int line_; // The line number of the expectation.
9085  const std::string source_text_; // The EXPECT_CALL(...) source text.
9086  // True if and only if the cardinality is specified explicitly.
9087  bool cardinality_specified_;
9088  Cardinality cardinality_; // The cardinality of the expectation.
9089  // The immediate pre-requisites (i.e. expectations that must be
9090  // satisfied before this expectation can be matched) of this
9091  // expectation. We use std::shared_ptr in the set because we want an
9092  // Expectation object to be co-owned by its FunctionMocker and its
9093  // successors. This allows multiple mock objects to be deleted at
9094  // different times.
9095  ExpectationSet immediate_prerequisites_;
9096 
9097  // This group of fields are the current state of the expectation,
9098  // and can change as the mock function is called.
9099  int call_count_; // How many times this expectation has been invoked.
9100  bool retired_; // True if and only if this expectation has retired.
9101  UntypedActions untyped_actions_;
9102  bool extra_matcher_specified_;
9103  bool repeated_action_specified_; // True if a WillRepeatedly() was specified.
9104  bool retires_on_saturation_;
9105  Clause last_clause_;
9106  mutable bool action_count_checked_; // Under mutex_.
9107  mutable Mutex mutex_; // Protects action_count_checked_.
9108 }; // class ExpectationBase
9109 
9110 // Impements an expectation for the given function type.
9111 template <typename F>
9112 class TypedExpectation : public ExpectationBase {
9113  public:
9114  typedef typename Function<F>::ArgumentTuple ArgumentTuple;
9115  typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
9116  typedef typename Function<F>::Result Result;
9117 
9118  TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
9119  const std::string& a_source_text,
9120  const ArgumentMatcherTuple& m)
9121  : ExpectationBase(a_file, a_line, a_source_text),
9122  owner_(owner),
9123  matchers_(m),
9124  // By default, extra_matcher_ should match anything. However,
9125  // we cannot initialize it with _ as that causes ambiguity between
9126  // Matcher's copy and move constructor for some argument types.
9127  extra_matcher_(A<const ArgumentTuple&>()),
9128  repeated_action_(DoDefault()) {}
9129 
9130  ~TypedExpectation() override {
9131  // Check the validity of the action count if it hasn't been done
9132  // yet (for example, if the expectation was never used).
9133  CheckActionCountIfNotDone();
9134  for (UntypedActions::const_iterator it = untyped_actions_.begin();
9135  it != untyped_actions_.end(); ++it) {
9136  delete static_cast<const Action<F>*>(*it);
9137  }
9138  }
9139 
9140  // Implements the .With() clause.
9141  TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
9142  if (last_clause_ == kWith) {
9143  ExpectSpecProperty(false,
9144  ".With() cannot appear "
9145  "more than once in an EXPECT_CALL().");
9146  } else {
9147  ExpectSpecProperty(last_clause_ < kWith,
9148  ".With() must be the first "
9149  "clause in an EXPECT_CALL().");
9150  }
9151  last_clause_ = kWith;
9152 
9153  extra_matcher_ = m;
9154  extra_matcher_specified_ = true;
9155  return *this;
9156  }
9157 
9158  // Implements the .Times() clause.
9159  TypedExpectation& Times(const Cardinality& a_cardinality) {
9160  ExpectationBase::UntypedTimes(a_cardinality);
9161  return *this;
9162  }
9163 
9164  // Implements the .Times() clause.
9165  TypedExpectation& Times(int n) {
9166  return Times(Exactly(n));
9167  }
9168 
9169  // Implements the .InSequence() clause.
9170  TypedExpectation& InSequence(const Sequence& s) {
9171  ExpectSpecProperty(last_clause_ <= kInSequence,
9172  ".InSequence() cannot appear after .After(),"
9173  " .WillOnce(), .WillRepeatedly(), or "
9174  ".RetiresOnSaturation().");
9175  last_clause_ = kInSequence;
9176 
9177  s.AddExpectation(GetHandle());
9178  return *this;
9179  }
9180  TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
9181  return InSequence(s1).InSequence(s2);
9182  }
9183  TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9184  const Sequence& s3) {
9185  return InSequence(s1, s2).InSequence(s3);
9186  }
9187  TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9188  const Sequence& s3, const Sequence& s4) {
9189  return InSequence(s1, s2, s3).InSequence(s4);
9190  }
9191  TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9192  const Sequence& s3, const Sequence& s4,
9193  const Sequence& s5) {
9194  return InSequence(s1, s2, s3, s4).InSequence(s5);
9195  }
9196 
9197  // Implements that .After() clause.
9198  TypedExpectation& After(const ExpectationSet& s) {
9199  ExpectSpecProperty(last_clause_ <= kAfter,
9200  ".After() cannot appear after .WillOnce(),"
9201  " .WillRepeatedly(), or "
9202  ".RetiresOnSaturation().");
9203  last_clause_ = kAfter;
9204 
9205  for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
9206  immediate_prerequisites_ += *it;
9207  }
9208  return *this;
9209  }
9210  TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
9211  return After(s1).After(s2);
9212  }
9213  TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9214  const ExpectationSet& s3) {
9215  return After(s1, s2).After(s3);
9216  }
9217  TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9218  const ExpectationSet& s3, const ExpectationSet& s4) {
9219  return After(s1, s2, s3).After(s4);
9220  }
9221  TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9222  const ExpectationSet& s3, const ExpectationSet& s4,
9223  const ExpectationSet& s5) {
9224  return After(s1, s2, s3, s4).After(s5);
9225  }
9226 
9227  // Implements the .WillOnce() clause.
9228  TypedExpectation& WillOnce(const Action<F>& action) {
9229  ExpectSpecProperty(last_clause_ <= kWillOnce,
9230  ".WillOnce() cannot appear after "
9231  ".WillRepeatedly() or .RetiresOnSaturation().");
9232  last_clause_ = kWillOnce;
9233 
9234  untyped_actions_.push_back(new Action<F>(action));
9235  if (!cardinality_specified()) {
9236  set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
9237  }
9238  return *this;
9239  }
9240 
9241  // Implements the .WillRepeatedly() clause.
9242  TypedExpectation& WillRepeatedly(const Action<F>& action) {
9243  if (last_clause_ == kWillRepeatedly) {
9244  ExpectSpecProperty(false,
9245  ".WillRepeatedly() cannot appear "
9246  "more than once in an EXPECT_CALL().");
9247  } else {
9248  ExpectSpecProperty(last_clause_ < kWillRepeatedly,
9249  ".WillRepeatedly() cannot appear "
9250  "after .RetiresOnSaturation().");
9251  }
9252  last_clause_ = kWillRepeatedly;
9253  repeated_action_specified_ = true;
9254 
9255  repeated_action_ = action;
9256  if (!cardinality_specified()) {
9257  set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
9258  }
9259 
9260  // Now that no more action clauses can be specified, we check
9261  // whether their count makes sense.
9262  CheckActionCountIfNotDone();
9263  return *this;
9264  }
9265 
9266  // Implements the .RetiresOnSaturation() clause.
9267  TypedExpectation& RetiresOnSaturation() {
9268  ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
9269  ".RetiresOnSaturation() cannot appear "
9270  "more than once.");
9271  last_clause_ = kRetiresOnSaturation;
9272  retires_on_saturation_ = true;
9273 
9274  // Now that no more action clauses can be specified, we check
9275  // whether their count makes sense.
9276  CheckActionCountIfNotDone();
9277  return *this;
9278  }
9279 
9280  // Returns the matchers for the arguments as specified inside the
9281  // EXPECT_CALL() macro.
9282  const ArgumentMatcherTuple& matchers() const {
9283  return matchers_;
9284  }
9285 
9286  // Returns the matcher specified by the .With() clause.
9287  const Matcher<const ArgumentTuple&>& extra_matcher() const {
9288  return extra_matcher_;
9289  }
9290 
9291  // Returns the action specified by the .WillRepeatedly() clause.
9292  const Action<F>& repeated_action() const { return repeated_action_; }
9293 
9294  // If this mock method has an extra matcher (i.e. .With(matcher)),
9295  // describes it to the ostream.
9296  void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
9297  if (extra_matcher_specified_) {
9298  *os << " Expected args: ";
9299  extra_matcher_.DescribeTo(os);
9300  *os << "\n";
9301  }
9302  }
9303 
9304  private:
9305  template <typename Function>
9306  friend class FunctionMocker;
9307 
9308  // Returns an Expectation object that references and co-owns this
9309  // expectation.
9310  Expectation GetHandle() override { return owner_->GetHandleOf(this); }
9311 
9312  // The following methods will be called only after the EXPECT_CALL()
9313  // statement finishes and when the current thread holds
9314  // g_gmock_mutex.
9315 
9316  // Returns true if and only if this expectation matches the given arguments.
9317  bool Matches(const ArgumentTuple& args) const
9318  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9319  g_gmock_mutex.AssertHeld();
9320  return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
9321  }
9322 
9323  // Returns true if and only if this expectation should handle the given
9324  // arguments.
9325  bool ShouldHandleArguments(const ArgumentTuple& args) const
9326  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9327  g_gmock_mutex.AssertHeld();
9328 
9329  // In case the action count wasn't checked when the expectation
9330  // was defined (e.g. if this expectation has no WillRepeatedly()
9331  // or RetiresOnSaturation() clause), we check it when the
9332  // expectation is used for the first time.
9333  CheckActionCountIfNotDone();
9334  return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
9335  }
9336 
9337  // Describes the result of matching the arguments against this
9338  // expectation to the given ostream.
9339  void ExplainMatchResultTo(
9340  const ArgumentTuple& args,
9341  ::std::ostream* os) const
9342  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9343  g_gmock_mutex.AssertHeld();
9344 
9345  if (is_retired()) {
9346  *os << " Expected: the expectation is active\n"
9347  << " Actual: it is retired\n";
9348  } else if (!Matches(args)) {
9349  if (!TupleMatches(matchers_, args)) {
9350  ExplainMatchFailureTupleTo(matchers_, args, os);
9351  }
9352  StringMatchResultListener listener;
9353  if (!extra_matcher_.MatchAndExplain(args, &listener)) {
9354  *os << " Expected args: ";
9355  extra_matcher_.DescribeTo(os);
9356  *os << "\n Actual: don't match";
9357 
9358  internal::PrintIfNotEmpty(listener.str(), os);
9359  *os << "\n";
9360  }
9361  } else if (!AllPrerequisitesAreSatisfied()) {
9362  *os << " Expected: all pre-requisites are satisfied\n"
9363  << " Actual: the following immediate pre-requisites "
9364  << "are not satisfied:\n";
9365  ExpectationSet unsatisfied_prereqs;
9366  FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
9367  int i = 0;
9368  for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
9369  it != unsatisfied_prereqs.end(); ++it) {
9370  it->expectation_base()->DescribeLocationTo(os);
9371  *os << "pre-requisite #" << i++ << "\n";
9372  }
9373  *os << " (end of pre-requisites)\n";
9374  } else {
9375  // This line is here just for completeness' sake. It will never
9376  // be executed as currently the ExplainMatchResultTo() function
9377  // is called only when the mock function call does NOT match the
9378  // expectation.
9379  *os << "The call matches the expectation.\n";
9380  }
9381  }
9382 
9383  // Returns the action that should be taken for the current invocation.
9384  const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
9385  const ArgumentTuple& args) const
9386  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9387  g_gmock_mutex.AssertHeld();
9388  const int count = call_count();
9389  Assert(count >= 1, __FILE__, __LINE__,
9390  "call_count() is <= 0 when GetCurrentAction() is "
9391  "called - this should never happen.");
9392 
9393  const int action_count = static_cast<int>(untyped_actions_.size());
9394  if (action_count > 0 && !repeated_action_specified_ &&
9395  count > action_count) {
9396  // If there is at least one WillOnce() and no WillRepeatedly(),
9397  // we warn the user when the WillOnce() clauses ran out.
9398  ::std::stringstream ss;
9399  DescribeLocationTo(&ss);
9400  ss << "Actions ran out in " << source_text() << "...\n"
9401  << "Called " << count << " times, but only "
9402  << action_count << " WillOnce()"
9403  << (action_count == 1 ? " is" : "s are") << " specified - ";
9404  mocker->DescribeDefaultActionTo(args, &ss);
9405  Log(kWarning, ss.str(), 1);
9406  }
9407 
9408  return count <= action_count
9409  ? *static_cast<const Action<F>*>(
9410  untyped_actions_[static_cast<size_t>(count - 1)])
9411  : repeated_action();
9412  }
9413 
9414  // Given the arguments of a mock function call, if the call will
9415  // over-saturate this expectation, returns the default action;
9416  // otherwise, returns the next action in this expectation. Also
9417  // describes *what* happened to 'what', and explains *why* Google
9418  // Mock does it to 'why'. This method is not const as it calls
9419  // IncrementCallCount(). A return value of NULL means the default
9420  // action.
9421  const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
9422  const ArgumentTuple& args,
9423  ::std::ostream* what,
9424  ::std::ostream* why)
9425  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9426  g_gmock_mutex.AssertHeld();
9427  if (IsSaturated()) {
9428  // We have an excessive call.
9429  IncrementCallCount();
9430  *what << "Mock function called more times than expected - ";
9431  mocker->DescribeDefaultActionTo(args, what);
9432  DescribeCallCountTo(why);
9433 
9434  return nullptr;
9435  }
9436 
9437  IncrementCallCount();
9438  RetireAllPreRequisites();
9439 
9440  if (retires_on_saturation_ && IsSaturated()) {
9441  Retire();
9442  }
9443 
9444  // Must be done after IncrementCount()!
9445  *what << "Mock function call matches " << source_text() <<"...\n";
9446  return &(GetCurrentAction(mocker, args));
9447  }
9448 
9449  // All the fields below won't change once the EXPECT_CALL()
9450  // statement finishes.
9451  FunctionMocker<F>* const owner_;
9452  ArgumentMatcherTuple matchers_;
9453  Matcher<const ArgumentTuple&> extra_matcher_;
9454  Action<F> repeated_action_;
9455 
9456  GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
9457 }; // class TypedExpectation
9458 
9459 // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
9460 // specifying the default behavior of, or expectation on, a mock
9461 // function.
9462 
9463 // Note: class MockSpec really belongs to the ::testing namespace.
9464 // However if we define it in ::testing, MSVC will complain when
9465 // classes in ::testing::internal declare it as a friend class
9466 // template. To workaround this compiler bug, we define MockSpec in
9467 // ::testing::internal and import it into ::testing.
9468 
9469 // Logs a message including file and line number information.
9470 GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
9471  const char* file, int line,
9472  const std::string& message);
9473 
9474 template <typename F>
9475 class MockSpec {
9476  public:
9477  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
9478  typedef typename internal::Function<F>::ArgumentMatcherTuple
9479  ArgumentMatcherTuple;
9480 
9481  // Constructs a MockSpec object, given the function mocker object
9482  // that the spec is associated with.
9483  MockSpec(internal::FunctionMocker<F>* function_mocker,
9484  const ArgumentMatcherTuple& matchers)
9485  : function_mocker_(function_mocker), matchers_(matchers) {}
9486 
9487  // Adds a new default action spec to the function mocker and returns
9488  // the newly created spec.
9489  internal::OnCallSpec<F>& InternalDefaultActionSetAt(
9490  const char* file, int line, const char* obj, const char* call) {
9491  LogWithLocation(internal::kInfo, file, line,
9492  std::string("ON_CALL(") + obj + ", " + call + ") invoked");
9493  return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
9494  }
9495 
9496  // Adds a new expectation spec to the function mocker and returns
9497  // the newly created spec.
9498  internal::TypedExpectation<F>& InternalExpectedAt(
9499  const char* file, int line, const char* obj, const char* call) {
9500  const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
9501  call + ")");
9502  LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
9503  return function_mocker_->AddNewExpectation(
9504  file, line, source_text, matchers_);
9505  }
9506 
9507  // This operator overload is used to swallow the superfluous parameter list
9508  // introduced by the ON/EXPECT_CALL macros. See the macro comments for more
9509  // explanation.
9510  MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
9511  return *this;
9512  }
9513 
9514  private:
9515  template <typename Function>
9516  friend class internal::FunctionMocker;
9517 
9518  // The function mocker that owns this spec.
9519  internal::FunctionMocker<F>* const function_mocker_;
9520  // The argument matchers specified in the spec.
9521  ArgumentMatcherTuple matchers_;
9522 }; // class MockSpec
9523 
9524 // Wrapper type for generically holding an ordinary value or lvalue reference.
9525 // If T is not a reference type, it must be copyable or movable.
9526 // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
9527 // T is a move-only value type (which means that it will always be copyable
9528 // if the current platform does not support move semantics).
9529 //
9530 // The primary template defines handling for values, but function header
9531 // comments describe the contract for the whole template (including
9532 // specializations).
9533 template <typename T>
9534 class ReferenceOrValueWrapper {
9535  public:
9536  // Constructs a wrapper from the given value/reference.
9537  explicit ReferenceOrValueWrapper(T value)
9538  : value_(std::move(value)) {
9539  }
9540 
9541  // Unwraps and returns the underlying value/reference, exactly as
9542  // originally passed. The behavior of calling this more than once on
9543  // the same object is unspecified.
9544  T Unwrap() { return std::move(value_); }
9545 
9546  // Provides nondestructive access to the underlying value/reference.
9547  // Always returns a const reference (more precisely,
9548  // const std::add_lvalue_reference<T>::type). The behavior of calling this
9549  // after calling Unwrap on the same object is unspecified.
9550  const T& Peek() const {
9551  return value_;
9552  }
9553 
9554  private:
9555  T value_;
9556 };
9557 
9558 // Specialization for lvalue reference types. See primary template
9559 // for documentation.
9560 template <typename T>
9561 class ReferenceOrValueWrapper<T&> {
9562  public:
9563  // Workaround for debatable pass-by-reference lint warning (c-library-team
9564  // policy precludes NOLINT in this context)
9565  typedef T& reference;
9566  explicit ReferenceOrValueWrapper(reference ref)
9567  : value_ptr_(&ref) {}
9568  T& Unwrap() { return *value_ptr_; }
9569  const T& Peek() const { return *value_ptr_; }
9570 
9571  private:
9572  T* value_ptr_;
9573 };
9574 
9575 // C++ treats the void type specially. For example, you cannot define
9576 // a void-typed variable or pass a void value to a function.
9577 // ActionResultHolder<T> holds a value of type T, where T must be a
9578 // copyable type or void (T doesn't need to be default-constructable).
9579 // It hides the syntactic difference between void and other types, and
9580 // is used to unify the code for invoking both void-returning and
9581 // non-void-returning mock functions.
9582 
9583 // Untyped base class for ActionResultHolder<T>.
9584 class UntypedActionResultHolderBase {
9585  public:
9586  virtual ~UntypedActionResultHolderBase() {}
9587 
9588  // Prints the held value as an action's result to os.
9589  virtual void PrintAsActionResult(::std::ostream* os) const = 0;
9590 };
9591 
9592 // This generic definition is used when T is not void.
9593 template <typename T>
9594 class ActionResultHolder : public UntypedActionResultHolderBase {
9595  public:
9596  // Returns the held value. Must not be called more than once.
9597  T Unwrap() {
9598  return result_.Unwrap();
9599  }
9600 
9601  // Prints the held value as an action's result to os.
9602  void PrintAsActionResult(::std::ostream* os) const override {
9603  *os << "\n Returns: ";
9604  // T may be a reference type, so we don't use UniversalPrint().
9605  UniversalPrinter<T>::Print(result_.Peek(), os);
9606  }
9607 
9608  // Performs the given mock function's default action and returns the
9609  // result in a new-ed ActionResultHolder.
9610  template <typename F>
9611  static ActionResultHolder* PerformDefaultAction(
9612  const FunctionMocker<F>* func_mocker,
9613  typename Function<F>::ArgumentTuple&& args,
9614  const std::string& call_description) {
9615  return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
9616  std::move(args), call_description)));
9617  }
9618 
9619  // Performs the given action and returns the result in a new-ed
9620  // ActionResultHolder.
9621  template <typename F>
9622  static ActionResultHolder* PerformAction(
9623  const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9624  return new ActionResultHolder(
9625  Wrapper(action.Perform(std::move(args))));
9626  }
9627 
9628  private:
9629  typedef ReferenceOrValueWrapper<T> Wrapper;
9630 
9631  explicit ActionResultHolder(Wrapper result)
9632  : result_(std::move(result)) {
9633  }
9634 
9635  Wrapper result_;
9636 
9637  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9638 };
9639 
9640 // Specialization for T = void.
9641 template <>
9642 class ActionResultHolder<void> : public UntypedActionResultHolderBase {
9643  public:
9644  void Unwrap() { }
9645 
9646  void PrintAsActionResult(::std::ostream* /* os */) const override {}
9647 
9648  // Performs the given mock function's default action and returns ownership
9649  // of an empty ActionResultHolder*.
9650  template <typename F>
9651  static ActionResultHolder* PerformDefaultAction(
9652  const FunctionMocker<F>* func_mocker,
9653  typename Function<F>::ArgumentTuple&& args,
9654  const std::string& call_description) {
9655  func_mocker->PerformDefaultAction(std::move(args), call_description);
9656  return new ActionResultHolder;
9657  }
9658 
9659  // Performs the given action and returns ownership of an empty
9660  // ActionResultHolder*.
9661  template <typename F>
9662  static ActionResultHolder* PerformAction(
9663  const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9664  action.Perform(std::move(args));
9665  return new ActionResultHolder;
9666  }
9667 
9668  private:
9669  ActionResultHolder() {}
9670  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9671 };
9672 
9673 template <typename F>
9674 class FunctionMocker;
9675 
9676 template <typename R, typename... Args>
9677 class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
9678  using F = R(Args...);
9679 
9680  public:
9681  using Result = R;
9682  using ArgumentTuple = std::tuple<Args...>;
9683  using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
9684 
9685  FunctionMocker() {}
9686 
9687  // There is no generally useful and implementable semantics of
9688  // copying a mock object, so copying a mock is usually a user error.
9689  // Thus we disallow copying function mockers. If the user really
9690  // wants to copy a mock object, they should implement their own copy
9691  // operation, for example:
9692  //
9693  // class MockFoo : public Foo {
9694  // public:
9695  // // Defines a copy constructor explicitly.
9696  // MockFoo(const MockFoo& src) {}
9697  // ...
9698  // };
9699  FunctionMocker(const FunctionMocker&) = delete;
9700  FunctionMocker& operator=(const FunctionMocker&) = delete;
9701 
9702  // The destructor verifies that all expectations on this mock
9703  // function have been satisfied. If not, it will report Google Test
9704  // non-fatal failures for the violations.
9705  ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9706  MutexLock l(&g_gmock_mutex);
9707  VerifyAndClearExpectationsLocked();
9708  Mock::UnregisterLocked(this);
9709  ClearDefaultActionsLocked();
9710  }
9711 
9712  // Returns the ON_CALL spec that matches this mock function with the
9713  // given arguments; returns NULL if no matching ON_CALL is found.
9714  // L = *
9715  const OnCallSpec<F>* FindOnCallSpec(
9716  const ArgumentTuple& args) const {
9717  for (UntypedOnCallSpecs::const_reverse_iterator it
9718  = untyped_on_call_specs_.rbegin();
9719  it != untyped_on_call_specs_.rend(); ++it) {
9720  const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
9721  if (spec->Matches(args))
9722  return spec;
9723  }
9724 
9725  return nullptr;
9726  }
9727 
9728  // Performs the default action of this mock function on the given
9729  // arguments and returns the result. Asserts (or throws if
9730  // exceptions are enabled) with a helpful call descrption if there
9731  // is no valid return value. This method doesn't depend on the
9732  // mutable state of this object, and thus can be called concurrently
9733  // without locking.
9734  // L = *
9735  Result PerformDefaultAction(ArgumentTuple&& args,
9736  const std::string& call_description) const {
9737  const OnCallSpec<F>* const spec =
9738  this->FindOnCallSpec(args);
9739  if (spec != nullptr) {
9740  return spec->GetAction().Perform(std::move(args));
9741  }
9742  const std::string message =
9743  call_description +
9744  "\n The mock function has no default action "
9745  "set, and its return type has no default value set.";
9746 #if GTEST_HAS_EXCEPTIONS
9747  if (!DefaultValue<Result>::Exists()) {
9748  throw std::runtime_error(message);
9749  }
9750 #else
9751  Assert(DefaultValue<Result>::Exists(), "", -1, message);
9752 #endif
9753  return DefaultValue<Result>::Get();
9754  }
9755 
9756  // Performs the default action with the given arguments and returns
9757  // the action's result. The call description string will be used in
9758  // the error message to describe the call in the case the default
9759  // action fails. The caller is responsible for deleting the result.
9760  // L = *
9761  UntypedActionResultHolderBase* UntypedPerformDefaultAction(
9762  void* untyped_args, // must point to an ArgumentTuple
9763  const std::string& call_description) const override {
9764  ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9765  return ResultHolder::PerformDefaultAction(this, std::move(*args),
9766  call_description);
9767  }
9768 
9769  // Performs the given action with the given arguments and returns
9770  // the action's result. The caller is responsible for deleting the
9771  // result.
9772  // L = *
9773  UntypedActionResultHolderBase* UntypedPerformAction(
9774  const void* untyped_action, void* untyped_args) const override {
9775  // Make a copy of the action before performing it, in case the
9776  // action deletes the mock object (and thus deletes itself).
9777  const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
9778  ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9779  return ResultHolder::PerformAction(action, std::move(*args));
9780  }
9781 
9782  // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
9783  // clears the ON_CALL()s set on this mock function.
9784  void ClearDefaultActionsLocked() override
9785  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9786  g_gmock_mutex.AssertHeld();
9787 
9788  // Deleting our default actions may trigger other mock objects to be
9789  // deleted, for example if an action contains a reference counted smart
9790  // pointer to that mock object, and that is the last reference. So if we
9791  // delete our actions within the context of the global mutex we may deadlock
9792  // when this method is called again. Instead, make a copy of the set of
9793  // actions to delete, clear our set within the mutex, and then delete the
9794  // actions outside of the mutex.
9795  UntypedOnCallSpecs specs_to_delete;
9796  untyped_on_call_specs_.swap(specs_to_delete);
9797 
9798  g_gmock_mutex.Unlock();
9799  for (UntypedOnCallSpecs::const_iterator it =
9800  specs_to_delete.begin();
9801  it != specs_to_delete.end(); ++it) {
9802  delete static_cast<const OnCallSpec<F>*>(*it);
9803  }
9804 
9805  // Lock the mutex again, since the caller expects it to be locked when we
9806  // return.
9807  g_gmock_mutex.Lock();
9808  }
9809 
9810  // Returns the result of invoking this mock function with the given
9811  // arguments. This function can be safely called from multiple
9812  // threads concurrently.
9813  Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9814  ArgumentTuple tuple(std::forward<Args>(args)...);
9815  std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
9816  this->UntypedInvokeWith(static_cast<void*>(&tuple))));
9817  return holder->Unwrap();
9818  }
9819 
9820  MockSpec<F> With(Matcher<Args>... m) {
9821  return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
9822  }
9823 
9824  protected:
9825  template <typename Function>
9826  friend class MockSpec;
9827 
9828  typedef ActionResultHolder<Result> ResultHolder;
9829 
9830  // Adds and returns a default action spec for this mock function.
9831  OnCallSpec<F>& AddNewOnCallSpec(
9832  const char* file, int line,
9833  const ArgumentMatcherTuple& m)
9834  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9835  Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9836  OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
9837  untyped_on_call_specs_.push_back(on_call_spec);
9838  return *on_call_spec;
9839  }
9840 
9841  // Adds and returns an expectation spec for this mock function.
9842  TypedExpectation<F>& AddNewExpectation(const char* file, int line,
9843  const std::string& source_text,
9844  const ArgumentMatcherTuple& m)
9845  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9846  Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9847  TypedExpectation<F>* const expectation =
9848  new TypedExpectation<F>(this, file, line, source_text, m);
9849  const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
9850  // See the definition of untyped_expectations_ for why access to
9851  // it is unprotected here.
9852  untyped_expectations_.push_back(untyped_expectation);
9853 
9854  // Adds this expectation into the implicit sequence if there is one.
9855  Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
9856  if (implicit_sequence != nullptr) {
9857  implicit_sequence->AddExpectation(Expectation(untyped_expectation));
9858  }
9859 
9860  return *expectation;
9861  }
9862 
9863  private:
9864  template <typename Func> friend class TypedExpectation;
9865 
9866  // Some utilities needed for implementing UntypedInvokeWith().
9867 
9868  // Describes what default action will be performed for the given
9869  // arguments.
9870  // L = *
9871  void DescribeDefaultActionTo(const ArgumentTuple& args,
9872  ::std::ostream* os) const {
9873  const OnCallSpec<F>* const spec = FindOnCallSpec(args);
9874 
9875  if (spec == nullptr) {
9876  *os << (std::is_void<Result>::value ? "returning directly.\n"
9877  : "returning default value.\n");
9878  } else {
9879  *os << "taking default action specified at:\n"
9880  << FormatFileLocation(spec->file(), spec->line()) << "\n";
9881  }
9882  }
9883 
9884  // Writes a message that the call is uninteresting (i.e. neither
9885  // explicitly expected nor explicitly unexpected) to the given
9886  // ostream.
9887  void UntypedDescribeUninterestingCall(const void* untyped_args,
9888  ::std::ostream* os) const override
9889  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9890  const ArgumentTuple& args =
9891  *static_cast<const ArgumentTuple*>(untyped_args);
9892  *os << "Uninteresting mock function call - ";
9893  DescribeDefaultActionTo(args, os);
9894  *os << " Function call: " << Name();
9895  UniversalPrint(args, os);
9896  }
9897 
9898  // Returns the expectation that matches the given function arguments
9899  // (or NULL is there's no match); when a match is found,
9900  // untyped_action is set to point to the action that should be
9901  // performed (or NULL if the action is "do default"), and
9902  // is_excessive is modified to indicate whether the call exceeds the
9903  // expected number.
9904  //
9905  // Critical section: We must find the matching expectation and the
9906  // corresponding action that needs to be taken in an ATOMIC
9907  // transaction. Otherwise another thread may call this mock
9908  // method in the middle and mess up the state.
9909  //
9910  // However, performing the action has to be left out of the critical
9911  // section. The reason is that we have no control on what the
9912  // action does (it can invoke an arbitrary user function or even a
9913  // mock function) and excessive locking could cause a dead lock.
9914  const ExpectationBase* UntypedFindMatchingExpectation(
9915  const void* untyped_args, const void** untyped_action, bool* is_excessive,
9916  ::std::ostream* what, ::std::ostream* why) override
9917  GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9918  const ArgumentTuple& args =
9919  *static_cast<const ArgumentTuple*>(untyped_args);
9920  MutexLock l(&g_gmock_mutex);
9921  TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
9922  if (exp == nullptr) { // A match wasn't found.
9923  this->FormatUnexpectedCallMessageLocked(args, what, why);
9924  return nullptr;
9925  }
9926 
9927  // This line must be done before calling GetActionForArguments(),
9928  // which will increment the call count for *exp and thus affect
9929  // its saturation status.
9930  *is_excessive = exp->IsSaturated();
9931  const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
9932  if (action != nullptr && action->IsDoDefault())
9933  action = nullptr; // Normalize "do default" to NULL.
9934  *untyped_action = action;
9935  return exp;
9936  }
9937 
9938  // Prints the given function arguments to the ostream.
9939  void UntypedPrintArgs(const void* untyped_args,
9940  ::std::ostream* os) const override {
9941  const ArgumentTuple& args =
9942  *static_cast<const ArgumentTuple*>(untyped_args);
9943  UniversalPrint(args, os);
9944  }
9945 
9946  // Returns the expectation that matches the arguments, or NULL if no
9947  // expectation matches them.
9948  TypedExpectation<F>* FindMatchingExpectationLocked(
9949  const ArgumentTuple& args) const
9950  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9951  g_gmock_mutex.AssertHeld();
9952  // See the definition of untyped_expectations_ for why access to
9953  // it is unprotected here.
9954  for (typename UntypedExpectations::const_reverse_iterator it =
9955  untyped_expectations_.rbegin();
9956  it != untyped_expectations_.rend(); ++it) {
9957  TypedExpectation<F>* const exp =
9958  static_cast<TypedExpectation<F>*>(it->get());
9959  if (exp->ShouldHandleArguments(args)) {
9960  return exp;
9961  }
9962  }
9963  return nullptr;
9964  }
9965 
9966  // Returns a message that the arguments don't match any expectation.
9967  void FormatUnexpectedCallMessageLocked(
9968  const ArgumentTuple& args,
9969  ::std::ostream* os,
9970  ::std::ostream* why) const
9971  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9972  g_gmock_mutex.AssertHeld();
9973  *os << "\nUnexpected mock function call - ";
9974  DescribeDefaultActionTo(args, os);
9975  PrintTriedExpectationsLocked(args, why);
9976  }
9977 
9978  // Prints a list of expectations that have been tried against the
9979  // current mock function call.
9980  void PrintTriedExpectationsLocked(
9981  const ArgumentTuple& args,
9982  ::std::ostream* why) const
9983  GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9984  g_gmock_mutex.AssertHeld();
9985  const size_t count = untyped_expectations_.size();
9986  *why << "Google Mock tried the following " << count << " "
9987  << (count == 1 ? "expectation, but it didn't match" :
9988  "expectations, but none matched")
9989  << ":\n";
9990  for (size_t i = 0; i < count; i++) {
9991  TypedExpectation<F>* const expectation =
9992  static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
9993  *why << "\n";
9994  expectation->DescribeLocationTo(why);
9995  if (count > 1) {
9996  *why << "tried expectation #" << i << ": ";
9997  }
9998  *why << expectation->source_text() << "...\n";
9999  expectation->ExplainMatchResultTo(args, why);
10000  expectation->DescribeCallCountTo(why);
10001  }
10002  }
10003 }; // class FunctionMocker
10004 
10005 // Reports an uninteresting call (whose description is in msg) in the
10006 // manner specified by 'reaction'.
10007 void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
10008 
10009 } // namespace internal
10010 
10011 namespace internal {
10012 
10013 template <typename F>
10014 class MockFunction;
10015 
10016 template <typename R, typename... Args>
10017 class MockFunction<R(Args...)> {
10018  public:
10019  MockFunction(const MockFunction&) = delete;
10020  MockFunction& operator=(const MockFunction&) = delete;
10021 
10022  std::function<R(Args...)> AsStdFunction() {
10023  return [this](Args... args) -> R {
10024  return this->Call(std::forward<Args>(args)...);
10025  };
10026  }
10027 
10028  // Implementation detail: the expansion of the MOCK_METHOD macro.
10029  R Call(Args... args) {
10030  mock_.SetOwnerAndName(this, "Call");
10031  return mock_.Invoke(std::forward<Args>(args)...);
10032  }
10033 
10034  MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
10035  mock_.RegisterOwner(this);
10036  return mock_.With(std::move(m)...);
10037  }
10038 
10039  MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
10040  return this->gmock_Call(::testing::A<Args>()...);
10041  }
10042 
10043  protected:
10044  MockFunction() = default;
10045  ~MockFunction() = default;
10046 
10047  private:
10048  FunctionMocker<R(Args...)> mock_;
10049 };
10050 
10051 /*
10052 The SignatureOf<F> struct is a meta-function returning function signature
10053 corresponding to the provided F argument.
10054 
10055 It makes use of MockFunction easier by allowing it to accept more F arguments
10056 than just function signatures.
10057 
10058 Specializations provided here cover only a signature type itself and
10059 std::function. However, if need be it can be easily extended to cover also other
10060 types (like for example boost::function).
10061 */
10062 
10063 template <typename F>
10064 struct SignatureOf;
10065 
10066 template <typename R, typename... Args>
10067 struct SignatureOf<R(Args...)> {
10068  using type = R(Args...);
10069 };
10070 
10071 template <typename F>
10072 struct SignatureOf<std::function<F>> : SignatureOf<F> {};
10073 
10074 template <typename F>
10075 using SignatureOfT = typename SignatureOf<F>::type;
10076 
10077 } // namespace internal
10078 
10079 // A MockFunction<F> type has one mock method whose type is
10080 // internal::SignatureOfT<F>. It is useful when you just want your
10081 // test code to emit some messages and have Google Mock verify the
10082 // right messages are sent (and perhaps at the right times). For
10083 // example, if you are exercising code:
10084 //
10085 // Foo(1);
10086 // Foo(2);
10087 // Foo(3);
10088 //
10089 // and want to verify that Foo(1) and Foo(3) both invoke
10090 // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
10091 //
10092 // TEST(FooTest, InvokesBarCorrectly) {
10093 // MyMock mock;
10094 // MockFunction<void(string check_point_name)> check;
10095 // {
10096 // InSequence s;
10097 //
10098 // EXPECT_CALL(mock, Bar("a"));
10099 // EXPECT_CALL(check, Call("1"));
10100 // EXPECT_CALL(check, Call("2"));
10101 // EXPECT_CALL(mock, Bar("a"));
10102 // }
10103 // Foo(1);
10104 // check.Call("1");
10105 // Foo(2);
10106 // check.Call("2");
10107 // Foo(3);
10108 // }
10109 //
10110 // The expectation spec says that the first Bar("a") must happen
10111 // before check point "1", the second Bar("a") must happen after check
10112 // point "2", and nothing should happen between the two check
10113 // points. The explicit check points make it easy to tell which
10114 // Bar("a") is called by which call to Foo().
10115 //
10116 // MockFunction<F> can also be used to exercise code that accepts
10117 // std::function<internal::SignatureOfT<F>> callbacks. To do so, use
10118 // AsStdFunction() method to create std::function proxy forwarding to
10119 // original object's Call. Example:
10120 //
10121 // TEST(FooTest, RunsCallbackWithBarArgument) {
10122 // MockFunction<int(string)> callback;
10123 // EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
10124 // Foo(callback.AsStdFunction());
10125 // }
10126 //
10127 // The internal::SignatureOfT<F> indirection allows to use other types
10128 // than just function signature type. This is typically useful when
10129 // providing a mock for a predefined std::function type. Example:
10130 //
10131 // using FilterPredicate = std::function<bool(string)>;
10132 // void MyFilterAlgorithm(FilterPredicate predicate);
10133 //
10134 // TEST(FooTest, FilterPredicateAlwaysAccepts) {
10135 // MockFunction<FilterPredicate> predicateMock;
10136 // EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
10137 // MyFilterAlgorithm(predicateMock.AsStdFunction());
10138 // }
10139 template <typename F>
10140 class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
10141  using Base = internal::MockFunction<internal::SignatureOfT<F>>;
10142 
10143  public:
10144  using Base::Base;
10145 };
10146 
10147 // The style guide prohibits "using" statements in a namespace scope
10148 // inside a header file. However, the MockSpec class template is
10149 // meant to be defined in the ::testing namespace. The following line
10150 // is just a trick for working around a bug in MSVC 8.0, which cannot
10151 // handle it if we define MockSpec in ::testing.
10152 using internal::MockSpec;
10153 
10154 // Const(x) is a convenient function for obtaining a const reference
10155 // to x. This is useful for setting expectations on an overloaded
10156 // const mock method, e.g.
10157 //
10158 // class MockFoo : public FooInterface {
10159 // public:
10160 // MOCK_METHOD0(Bar, int());
10161 // MOCK_CONST_METHOD0(Bar, int&());
10162 // };
10163 //
10164 // MockFoo foo;
10165 // // Expects a call to non-const MockFoo::Bar().
10166 // EXPECT_CALL(foo, Bar());
10167 // // Expects a call to const MockFoo::Bar().
10168 // EXPECT_CALL(Const(foo), Bar());
10169 template <typename T>
10170 inline const T& Const(const T& x) { return x; }
10171 
10172 // Constructs an Expectation object that references and co-owns exp.
10173 inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT
10174  : expectation_base_(exp.GetHandle().expectation_base()) {}
10175 
10176 } // namespace testing
10177 
10178 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
10179 
10180 // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
10181 // required to avoid compile errors when the name of the method used in call is
10182 // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
10183 // tests in internal/gmock-spec-builders_test.cc for more details.
10184 //
10185 // This macro supports statements both with and without parameter matchers. If
10186 // the parameter list is omitted, gMock will accept any parameters, which allows
10187 // tests to be written that don't need to encode the number of method
10188 // parameter. This technique may only be used for non-overloaded methods.
10189 //
10190 // // These are the same:
10191 // ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
10192 // ON_CALL(mock, NoArgsMethod).WillByDefault(...);
10193 //
10194 // // As are these:
10195 // ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
10196 // ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
10197 //
10198 // // Can also specify args if you want, of course:
10199 // ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
10200 //
10201 // // Overloads work as long as you specify parameters:
10202 // ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
10203 // ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
10204 //
10205 // // Oops! Which overload did you want?
10206 // ON_CALL(mock, OverloadedMethod).WillByDefault(...);
10207 // => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
10208 //
10209 // How this works: The mock class uses two overloads of the gmock_Method
10210 // expectation setter method plus an operator() overload on the MockSpec object.
10211 // In the matcher list form, the macro expands to:
10212 //
10213 // // This statement:
10214 // ON_CALL(mock, TwoArgsMethod(_, 45))...
10215 //
10216 // // ...expands to:
10217 // mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
10218 // |-------------v---------------||------------v-------------|
10219 // invokes first overload swallowed by operator()
10220 //
10221 // // ...which is essentially:
10222 // mock.gmock_TwoArgsMethod(_, 45)...
10223 //
10224 // Whereas the form without a matcher list:
10225 //
10226 // // This statement:
10227 // ON_CALL(mock, TwoArgsMethod)...
10228 //
10229 // // ...expands to:
10230 // mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
10231 // |-----------------------v--------------------------|
10232 // invokes second overload
10233 //
10234 // // ...which is essentially:
10235 // mock.gmock_TwoArgsMethod(_, _)...
10236 //
10237 // The WithoutMatchers() argument is used to disambiguate overloads and to
10238 // block the caller from accidentally invoking the second overload directly. The
10239 // second argument is an internal type derived from the method signature. The
10240 // failure to disambiguate two overloads of this method in the ON_CALL statement
10241 // is how we block callers from setting expectations on overloaded methods.
10242 #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \
10243  ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
10244  nullptr) \
10245  .Setter(__FILE__, __LINE__, #mock_expr, #call)
10246 
10247 #define ON_CALL(obj, call) \
10248  GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
10249 
10250 #define EXPECT_CALL(obj, call) \
10251  GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
10252 
10253 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
10254 
10255 namespace testing {
10256 namespace internal {
10257 template <typename T>
10258 using identity_t = T;
10259 
10260 template <typename Pattern>
10261 struct ThisRefAdjuster {
10262  template <typename T>
10263  using AdjustT = typename std::conditional<
10264  std::is_const<typename std::remove_reference<Pattern>::type>::value,
10265  typename std::conditional<std::is_lvalue_reference<Pattern>::value,
10266  const T&, const T&&>::type,
10267  typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
10268  T&&>::type>::type;
10269 
10270  template <typename MockType>
10271  static AdjustT<MockType> Adjust(const MockType& mock) {
10272  return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
10273  }
10274 };
10275 
10276 } // namespace internal
10277 
10278 // The style guide prohibits "using" statements in a namespace scope
10279 // inside a header file. However, the FunctionMocker class template
10280 // is meant to be defined in the ::testing namespace. The following
10281 // line is just a trick for working around a bug in MSVC 8.0, which
10282 // cannot handle it if we define FunctionMocker in ::testing.
10283 using internal::FunctionMocker;
10284 } // namespace testing
10285 
10286 #define MOCK_METHOD(...) \
10287  GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
10288 
10289 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
10290  GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10291 
10292 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
10293  GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10294 
10295 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
10296  GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
10297 
10298 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \
10299  GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \
10300  GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \
10301  GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
10302  GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \
10303  GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
10304  GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
10305  GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \
10306  GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \
10307  GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \
10308  GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
10309  (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
10310 
10311 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
10312  GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10313 
10314 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
10315  GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10316 
10317 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
10318  GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10319 
10320 #define GMOCK_INTERNAL_WRONG_ARITY(...) \
10321  static_assert( \
10322  false, \
10323  "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \
10324  "_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \
10325  "enclosed in parentheses. If _Ret is a type with unprotected commas, " \
10326  "it must also be enclosed in parentheses.")
10327 
10328 #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
10329  static_assert( \
10330  GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \
10331  GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
10332 
10333 #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \
10334  static_assert( \
10335  std::is_function<__VA_ARGS__>::value, \
10336  "Signature must be a function type, maybe return type contains " \
10337  "unprotected comma."); \
10338  static_assert( \
10339  ::testing::tuple_size<typename ::testing::internal::Function< \
10340  __VA_ARGS__>::ArgumentTuple>::value == _N, \
10341  "This method does not take " GMOCK_PP_STRINGIZE( \
10342  _N) " arguments. Parenthesize all types with unprotected commas.")
10343 
10344 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
10345  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
10346 
10347 #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \
10348  _Override, _Final, _NoexceptSpec, \
10349  _CallType, _RefSpec, _Signature) \
10350  typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \
10351  _Signature)>::Result \
10352  GMOCK_INTERNAL_EXPAND(_CallType) \
10353  _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \
10354  GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \
10355  GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \
10356  GMOCK_MOCKER_(_N, _Constness, _MethodName) \
10357  .SetOwnerAndName(this, #_MethodName); \
10358  return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
10359  .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \
10360  } \
10361  ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10362  GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \
10363  GMOCK_PP_IF(_Constness, const, ) _RefSpec { \
10364  GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \
10365  return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
10366  .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \
10367  } \
10368  ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10369  const ::testing::internal::WithoutMatchers&, \
10370  GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \
10371  GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
10372  return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \
10373  _Constness, const, ) int _RefSpec>::Adjust(*this) \
10374  .gmock_##_MethodName(GMOCK_PP_REPEAT( \
10375  GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \
10376  } \
10377  mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \
10378  GMOCK_MOCKER_(_N, _Constness, _MethodName)
10379 
10380 #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
10381 
10382 // Five Valid modifiers.
10383 #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
10384  GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
10385 
10386 #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
10387  GMOCK_PP_HAS_COMMA( \
10388  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
10389 
10390 #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
10391  GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
10392 
10393 #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
10394  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
10395 
10396 #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \
10397  GMOCK_PP_IF( \
10398  GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
10399  _elem, )
10400 
10401 #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
10402  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
10403 
10404 #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \
10405  GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
10406  GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
10407 
10408 #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
10409  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
10410 
10411 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \
10412  static_assert( \
10413  (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \
10414  GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
10415  GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \
10416  GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
10417  GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \
10418  GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \
10419  GMOCK_PP_STRINGIZE( \
10420  _elem) " cannot be recognized as a valid specification modifier.");
10421 
10422 // Modifiers implementation.
10423 #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
10424  GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
10425 
10426 #define GMOCK_INTERNAL_DETECT_CONST_I_const ,
10427 
10428 #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
10429  GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
10430 
10431 #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
10432 
10433 #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
10434  GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
10435 
10436 #define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
10437 
10438 #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
10439  GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
10440 
10441 #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
10442 
10443 #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
10444  GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
10445 
10446 #define GMOCK_INTERNAL_DETECT_REF_I_ref ,
10447 
10448 #define GMOCK_INTERNAL_UNPACK_ref(x) x
10449 
10450 #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \
10451  GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \
10452  GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
10453  (_elem)
10454 
10455 // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
10456 // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
10457 // maybe they can be simplified somehow.
10458 #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
10459  GMOCK_INTERNAL_IS_CALLTYPE_I( \
10460  GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10461 #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
10462 
10463 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
10464  GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \
10465  GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10466 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
10467  GMOCK_PP_IDENTITY _arg
10468 
10469 #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
10470 
10471 // Note: The use of `identity_t` here allows _Ret to represent return types that
10472 // would normally need to be specified in a different way. For example, a method
10473 // returning a function pointer must be written as
10474 //
10475 // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
10476 //
10477 // But we only support placing the return type at the beginning. To handle this,
10478 // we wrap all calls in identity_t, so that a declaration will be expanded to
10479 //
10480 // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
10481 //
10482 // This allows us to work around the syntactic oddities of function/method
10483 // types.
10484 #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \
10485  ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
10486  GMOCK_PP_REMOVE_PARENS, \
10487  GMOCK_PP_IDENTITY)(_Ret)>( \
10488  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
10489 
10490 #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \
10491  GMOCK_PP_COMMA_IF(_i) \
10492  GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
10493  GMOCK_PP_IDENTITY) \
10494  (_elem)
10495 
10496 #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \
10497  GMOCK_PP_COMMA_IF(_i) \
10498  GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10499  gmock_a##_i
10500 
10501 #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
10502  GMOCK_PP_COMMA_IF(_i) \
10503  ::std::forward<GMOCK_INTERNAL_ARG_O( \
10504  _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
10505 
10506 #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \
10507  GMOCK_PP_COMMA_IF(_i) \
10508  GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10509  gmock_a##_i
10510 
10511 #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
10512  GMOCK_PP_COMMA_IF(_i) \
10513  gmock_a##_i
10514 
10515 #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
10516  GMOCK_PP_COMMA_IF(_i) \
10517  ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
10518 
10519 #define GMOCK_INTERNAL_ARG_O(_i, ...) \
10520  typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
10521 
10522 #define GMOCK_INTERNAL_MATCHER_O(_i, ...) \
10523  const ::testing::Matcher<typename ::testing::internal::Function< \
10524  __VA_ARGS__>::template Arg<_i>::type>&
10525 
10526 #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
10527 #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
10528 #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
10529 #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
10530 #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
10531 #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
10532 #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
10533 #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
10534 #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
10535 #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
10536 #define MOCK_METHOD10(m, ...) \
10537  GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
10538 
10539 #define MOCK_CONST_METHOD0(m, ...) \
10540  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
10541 #define MOCK_CONST_METHOD1(m, ...) \
10542  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
10543 #define MOCK_CONST_METHOD2(m, ...) \
10544  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
10545 #define MOCK_CONST_METHOD3(m, ...) \
10546  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
10547 #define MOCK_CONST_METHOD4(m, ...) \
10548  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
10549 #define MOCK_CONST_METHOD5(m, ...) \
10550  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
10551 #define MOCK_CONST_METHOD6(m, ...) \
10552  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
10553 #define MOCK_CONST_METHOD7(m, ...) \
10554  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
10555 #define MOCK_CONST_METHOD8(m, ...) \
10556  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
10557 #define MOCK_CONST_METHOD9(m, ...) \
10558  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
10559 #define MOCK_CONST_METHOD10(m, ...) \
10560  GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
10561 
10562 #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
10563 #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
10564 #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
10565 #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
10566 #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
10567 #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
10568 #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
10569 #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
10570 #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
10571 #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
10572 #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
10573 
10574 #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
10575 #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
10576 #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
10577 #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
10578 #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
10579 #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
10580 #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
10581 #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
10582 #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
10583 #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
10584 #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
10585 
10586 #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10587  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
10588 #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10589  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
10590 #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10591  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
10592 #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10593  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
10594 #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10595  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
10596 #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10597  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
10598 #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10599  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
10600 #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10601  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
10602 #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10603  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
10604 #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10605  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
10606 #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10607  GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
10608 
10609 #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10610  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
10611 #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10612  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
10613 #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10614  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
10615 #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10616  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
10617 #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10618  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
10619 #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10620  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
10621 #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10622  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
10623 #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10624  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
10625 #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10626  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
10627 #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10628  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
10629 #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10630  GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
10631 
10632 #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10633  MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10634 #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10635  MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10636 #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10637  MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10638 #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10639  MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10640 #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10641  MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10642 #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10643  MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10644 #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10645  MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10646 #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10647  MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10648 #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10649  MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10650 #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10651  MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10652 #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10653  MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10654 
10655 #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10656  MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10657 #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10658  MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10659 #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10660  MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10661 #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10662  MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10663 #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10664  MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10665 #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10666  MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10667 #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10668  MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10669 #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10670  MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10671 #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10672  MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10673 #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10674  MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10675 #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10676  MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10677 
10678 #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
10679  GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
10680  args_num, ::testing::internal::identity_t<__VA_ARGS__>); \
10681  GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
10682  args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \
10683  (::testing::internal::identity_t<__VA_ARGS__>))
10684 
10685 #define GMOCK_MOCKER_(arity, constness, Method) \
10686  GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
10687 
10688 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
10689 // Copyright 2007, Google Inc.
10690 // All rights reserved.
10691 //
10692 // Redistribution and use in source and binary forms, with or without
10693 // modification, are permitted provided that the following conditions are
10694 // met:
10695 //
10696 // * Redistributions of source code must retain the above copyright
10697 // notice, this list of conditions and the following disclaimer.
10698 // * Redistributions in binary form must reproduce the above
10699 // copyright notice, this list of conditions and the following disclaimer
10700 // in the documentation and/or other materials provided with the
10701 // distribution.
10702 // * Neither the name of Google Inc. nor the names of its
10703 // contributors may be used to endorse or promote products derived from
10704 // this software without specific prior written permission.
10705 //
10706 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
10707 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
10708 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
10709 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
10710 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
10711 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
10712 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
10713 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
10714 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
10715 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
10716 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10717 
10718 
10719 // Google Mock - a framework for writing C++ mock classes.
10720 //
10721 // This file implements some commonly used variadic actions.
10722 
10723 // GOOGLETEST_CM0002 DO NOT DELETE
10724 
10725 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10726 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10727 
10728 #include <memory>
10729 #include <utility>
10730 
10731 
10732 // Include any custom callback actions added by the local installation.
10733 // GOOGLETEST_CM0002 DO NOT DELETE
10734 
10735 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10736 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10737 
10738 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10739 
10740 // Sometimes you want to give an action explicit template parameters
10741 // that cannot be inferred from its value parameters. ACTION() and
10742 // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
10743 // and can be viewed as an extension to ACTION() and ACTION_P*().
10744 //
10745 // The syntax:
10746 //
10747 // ACTION_TEMPLATE(ActionName,
10748 // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
10749 // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
10750 //
10751 // defines an action template that takes m explicit template
10752 // parameters and n value parameters. name_i is the name of the i-th
10753 // template parameter, and kind_i specifies whether it's a typename,
10754 // an integral constant, or a template. p_i is the name of the i-th
10755 // value parameter.
10756 //
10757 // Example:
10758 //
10759 // // DuplicateArg<k, T>(output) converts the k-th argument of the mock
10760 // // function to type T and copies it to *output.
10761 // ACTION_TEMPLATE(DuplicateArg,
10762 // HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
10763 // AND_1_VALUE_PARAMS(output)) {
10764 // *output = T(::std::get<k>(args));
10765 // }
10766 // ...
10767 // int n;
10768 // EXPECT_CALL(mock, Foo(_, _))
10769 // .WillOnce(DuplicateArg<1, unsigned char>(&n));
10770 //
10771 // To create an instance of an action template, write:
10772 //
10773 // ActionName<t1, ..., t_m>(v1, ..., v_n)
10774 //
10775 // where the ts are the template arguments and the vs are the value
10776 // arguments. The value argument types are inferred by the compiler.
10777 // If you want to explicitly specify the value argument types, you can
10778 // provide additional template arguments:
10779 //
10780 // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
10781 //
10782 // where u_i is the desired type of v_i.
10783 //
10784 // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
10785 // number of value parameters, but not on the number of template
10786 // parameters. Without the restriction, the meaning of the following
10787 // is unclear:
10788 //
10789 // OverloadedAction<int, bool>(x);
10790 //
10791 // Are we using a single-template-parameter action where 'bool' refers
10792 // to the type of x, or are we using a two-template-parameter action
10793 // where the compiler is asked to infer the type of x?
10794 //
10795 // Implementation notes:
10796 //
10797 // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
10798 // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
10799 // implementing ACTION_TEMPLATE. The main trick we use is to create
10800 // new macro invocations when expanding a macro. For example, we have
10801 //
10802 // #define ACTION_TEMPLATE(name, template_params, value_params)
10803 // ... GMOCK_INTERNAL_DECL_##template_params ...
10804 //
10805 // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
10806 // to expand to
10807 //
10808 // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
10809 //
10810 // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
10811 // preprocessor will continue to expand it to
10812 //
10813 // ... typename T ...
10814 //
10815 // This technique conforms to the C++ standard and is portable. It
10816 // allows us to implement action templates using O(N) code, where N is
10817 // the maximum number of template/value parameters supported. Without
10818 // using it, we'd have to devote O(N^2) amount of code to implement all
10819 // combinations of m and n.
10820 
10821 // Declares the template parameters.
10822 #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
10823 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10824  name1) kind0 name0, kind1 name1
10825 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10826  kind2, name2) kind0 name0, kind1 name1, kind2 name2
10827 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10828  kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
10829  kind3 name3
10830 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10831  kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
10832  kind2 name2, kind3 name3, kind4 name4
10833 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10834  kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
10835  kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
10836 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10837  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10838  name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
10839  kind5 name5, kind6 name6
10840 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10841  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10842  kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
10843  kind4 name4, kind5 name5, kind6 name6, kind7 name7
10844 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10845  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10846  kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
10847  kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
10848  kind8 name8
10849 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10850  name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10851  name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
10852  kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
10853  kind6 name6, kind7 name7, kind8 name8, kind9 name9
10854 
10855 // Lists the template parameters.
10856 #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
10857 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10858  name1) name0, name1
10859 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10860  kind2, name2) name0, name1, name2
10861 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10862  kind2, name2, kind3, name3) name0, name1, name2, name3
10863 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10864  kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
10865  name4
10866 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10867  kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
10868  name2, name3, name4, name5
10869 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10870  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10871  name6) name0, name1, name2, name3, name4, name5, name6
10872 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10873  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10874  kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
10875 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10876  kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10877  kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
10878  name6, name7, name8
10879 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10880  name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10881  name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
10882  name3, name4, name5, name6, name7, name8, name9
10883 
10884 // Declares the types of value parameters.
10885 #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
10886 #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
10887 #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
10888  typename p0##_type, typename p1##_type
10889 #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
10890  typename p0##_type, typename p1##_type, typename p2##_type
10891 #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
10892  typename p0##_type, typename p1##_type, typename p2##_type, \
10893  typename p3##_type
10894 #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
10895  typename p0##_type, typename p1##_type, typename p2##_type, \
10896  typename p3##_type, typename p4##_type
10897 #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
10898  typename p0##_type, typename p1##_type, typename p2##_type, \
10899  typename p3##_type, typename p4##_type, typename p5##_type
10900 #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10901  p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
10902  typename p3##_type, typename p4##_type, typename p5##_type, \
10903  typename p6##_type
10904 #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10905  p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
10906  typename p3##_type, typename p4##_type, typename p5##_type, \
10907  typename p6##_type, typename p7##_type
10908 #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10909  p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
10910  typename p3##_type, typename p4##_type, typename p5##_type, \
10911  typename p6##_type, typename p7##_type, typename p8##_type
10912 #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10913  p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
10914  typename p2##_type, typename p3##_type, typename p4##_type, \
10915  typename p5##_type, typename p6##_type, typename p7##_type, \
10916  typename p8##_type, typename p9##_type
10917 
10918 // Initializes the value parameters.
10919 #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
10920  ()
10921 #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
10922  (p0##_type gmock_p0) : p0(::std::move(gmock_p0))
10923 #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
10924  (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
10925  p1(::std::move(gmock_p1))
10926 #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
10927  (p0##_type gmock_p0, p1##_type gmock_p1, \
10928  p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
10929  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
10930 #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
10931  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10932  p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
10933  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10934  p3(::std::move(gmock_p3))
10935 #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
10936  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10937  p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
10938  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10939  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
10940 #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
10941  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10942  p3##_type gmock_p3, p4##_type gmock_p4, \
10943  p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
10944  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10945  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10946  p5(::std::move(gmock_p5))
10947 #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
10948  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10949  p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10950  p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
10951  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10952  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10953  p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
10954 #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
10955  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10956  p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10957  p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
10958  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10959  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10960  p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10961  p7(::std::move(gmock_p7))
10962 #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10963  p7, p8)\
10964  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10965  p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10966  p6##_type gmock_p6, p7##_type gmock_p7, \
10967  p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
10968  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10969  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10970  p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10971  p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
10972 #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10973  p7, p8, p9)\
10974  (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10975  p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10976  p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
10977  p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
10978  p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10979  p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10980  p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10981  p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
10982  p9(::std::move(gmock_p9))
10983 
10984 // Defines the copy constructor
10985 #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
10986  {} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
10987 #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
10988 #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
10989 #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
10990 #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
10991 #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
10992 #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
10993 #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
10994 #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
10995 #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
10996 #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
10997 
10998 // Declares the fields for storing the value parameters.
10999 #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
11000 #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
11001 #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
11002  p1##_type p1;
11003 #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
11004  p1##_type p1; p2##_type p2;
11005 #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
11006  p1##_type p1; p2##_type p2; p3##_type p3;
11007 #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11008  p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
11009 #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11010  p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11011  p5##_type p5;
11012 #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11013  p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11014  p5##_type p5; p6##_type p6;
11015 #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11016  p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11017  p5##_type p5; p6##_type p6; p7##_type p7;
11018 #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11019  p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11020  p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
11021 #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11022  p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11023  p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
11024  p9##_type p9;
11025 
11026 // Lists the value parameters.
11027 #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
11028 #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
11029 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
11030 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
11031 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
11032 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
11033  p2, p3, p4
11034 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
11035  p1, p2, p3, p4, p5
11036 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11037  p6) p0, p1, p2, p3, p4, p5, p6
11038 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11039  p7) p0, p1, p2, p3, p4, p5, p6, p7
11040 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11041  p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
11042 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11043  p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
11044 
11045 // Lists the value parameter types.
11046 #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
11047 #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
11048 #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
11049  p1##_type
11050 #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
11051  p1##_type, p2##_type
11052 #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
11053  p0##_type, p1##_type, p2##_type, p3##_type
11054 #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
11055  p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
11056 #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
11057  p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
11058 #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11059  p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
11060  p6##_type
11061 #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11062  p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11063  p5##_type, p6##_type, p7##_type
11064 #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11065  p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11066  p5##_type, p6##_type, p7##_type, p8##_type
11067 #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11068  p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11069  p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
11070 
11071 // Declares the value parameters.
11072 #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
11073 #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
11074 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
11075  p1##_type p1
11076 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
11077  p1##_type p1, p2##_type p2
11078 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
11079  p1##_type p1, p2##_type p2, p3##_type p3
11080 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11081  p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
11082 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11083  p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11084  p5##_type p5
11085 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11086  p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11087  p5##_type p5, p6##_type p6
11088 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11089  p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11090  p5##_type p5, p6##_type p6, p7##_type p7
11091 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11092  p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11093  p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
11094 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11095  p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11096  p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
11097  p9##_type p9
11098 
11099 // The suffix of the class template implementing the action template.
11100 #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
11101 #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
11102 #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
11103 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
11104 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
11105 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
11106 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
11107 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
11108 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11109  p7) P8
11110 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11111  p7, p8) P9
11112 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11113  p7, p8, p9) P10
11114 
11115 // The name of the class template implementing the action template.
11116 #define GMOCK_ACTION_CLASS_(name, value_params)\
11117  GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
11118 
11119 #define ACTION_TEMPLATE(name, template_params, value_params) \
11120  template <GMOCK_INTERNAL_DECL_##template_params \
11121  GMOCK_INTERNAL_DECL_TYPE_##value_params> \
11122  class GMOCK_ACTION_CLASS_(name, value_params) { \
11123  public: \
11124  explicit GMOCK_ACTION_CLASS_(name, value_params)( \
11125  GMOCK_INTERNAL_DECL_##value_params) \
11126  GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
11127  = default; , \
11128  : impl_(std::make_shared<gmock_Impl>( \
11129  GMOCK_INTERNAL_LIST_##value_params)) { }) \
11130  GMOCK_ACTION_CLASS_(name, value_params)( \
11131  const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \
11132  GMOCK_INTERNAL_DEFN_COPY_##value_params \
11133  GMOCK_ACTION_CLASS_(name, value_params)( \
11134  GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \
11135  GMOCK_INTERNAL_DEFN_COPY_##value_params \
11136  template <typename F> \
11137  operator ::testing::Action<F>() const { \
11138  return GMOCK_PP_IF( \
11139  GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
11140  (::testing::internal::MakeAction<F, gmock_Impl>()), \
11141  (::testing::internal::MakeAction<F>(impl_))); \
11142  } \
11143  private: \
11144  class gmock_Impl { \
11145  public: \
11146  explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \
11147  template <typename function_type, typename return_type, \
11148  typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
11149  return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
11150  GMOCK_INTERNAL_DEFN_##value_params \
11151  }; \
11152  GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
11153  , std::shared_ptr<const gmock_Impl> impl_;) \
11154  }; \
11155  template <GMOCK_INTERNAL_DECL_##template_params \
11156  GMOCK_INTERNAL_DECL_TYPE_##value_params> \
11157  GMOCK_ACTION_CLASS_(name, value_params)< \
11158  GMOCK_INTERNAL_LIST_##template_params \
11159  GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
11160  GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \
11161  template <GMOCK_INTERNAL_DECL_##template_params \
11162  GMOCK_INTERNAL_DECL_TYPE_##value_params> \
11163  inline GMOCK_ACTION_CLASS_(name, value_params)< \
11164  GMOCK_INTERNAL_LIST_##template_params \
11165  GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
11166  GMOCK_INTERNAL_DECL_##value_params) { \
11167  return GMOCK_ACTION_CLASS_(name, value_params)< \
11168  GMOCK_INTERNAL_LIST_##template_params \
11169  GMOCK_INTERNAL_LIST_TYPE_##value_params>( \
11170  GMOCK_INTERNAL_LIST_##value_params); \
11171  } \
11172  template <GMOCK_INTERNAL_DECL_##template_params \
11173  GMOCK_INTERNAL_DECL_TYPE_##value_params> \
11174  template <typename function_type, typename return_type, typename args_type, \
11175  GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
11176  return_type GMOCK_ACTION_CLASS_(name, value_params)< \
11177  GMOCK_INTERNAL_LIST_##template_params \
11178  GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
11179  GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
11180 
11181 namespace testing {
11182 
11183 // The ACTION*() macros trigger warning C4100 (unreferenced formal
11184 // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
11185 // the macro definition, as the warnings are generated when the macro
11186 // is expanded and macro expansion cannot contain #pragma. Therefore
11187 // we suppress them here.
11188 #ifdef _MSC_VER
11189 # pragma warning(push)
11190 # pragma warning(disable:4100)
11191 #endif
11192 
11193 namespace internal {
11194 
11195 // internal::InvokeArgument - a helper for InvokeArgument action.
11196 // The basic overloads are provided here for generic functors.
11197 // Overloads for other custom-callables are provided in the
11198 // internal/custom/gmock-generated-actions.h header.
11199 template <typename F, typename... Args>
11200 auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
11201  return f(args...);
11202 }
11203 
11204 template <std::size_t index, typename... Params>
11205 struct InvokeArgumentAction {
11206  template <typename... Args>
11207  auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
11208  std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
11209  std::declval<const Params&>()...)) {
11210  internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
11211  std::forward<Args>(args)...);
11212  return params.Apply([&](const Params&... unpacked_params) {
11213  auto&& callable = args_tuple.template Get<index>();
11214  return internal::InvokeArgument(
11215  std::forward<decltype(callable)>(callable), unpacked_params...);
11216  });
11217  }
11218 
11219  internal::FlatTuple<Params...> params;
11220 };
11221 
11222 } // namespace internal
11223 
11224 // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
11225 // (0-based) argument, which must be a k-ary callable, of the mock
11226 // function, with arguments a1, a2, ..., a_k.
11227 //
11228 // Notes:
11229 //
11230 // 1. The arguments are passed by value by default. If you need to
11231 // pass an argument by reference, wrap it inside std::ref(). For
11232 // example,
11233 //
11234 // InvokeArgument<1>(5, string("Hello"), std::ref(foo))
11235 //
11236 // passes 5 and string("Hello") by value, and passes foo by
11237 // reference.
11238 //
11239 // 2. If the callable takes an argument by reference but std::ref() is
11240 // not used, it will receive the reference to a copy of the value,
11241 // instead of the original value. For example, when the 0-th
11242 // argument of the mock function takes a const string&, the action
11243 //
11244 // InvokeArgument<0>(string("Hello"))
11245 //
11246 // makes a copy of the temporary string("Hello") object and passes a
11247 // reference of the copy, instead of the original temporary object,
11248 // to the callable. This makes it easy for a user to define an
11249 // InvokeArgument action from temporary values and have it performed
11250 // later.
11251 template <std::size_t index, typename... Params>
11252 internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
11253 InvokeArgument(Params&&... params) {
11254  return {internal::FlatTuple<typename std::decay<Params>::type...>(
11255  internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
11256 }
11257 
11258 #ifdef _MSC_VER
11259 # pragma warning(pop)
11260 #endif
11261 
11262 } // namespace testing
11263 
11264 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
11265 // Copyright 2013, Google Inc.
11266 // All rights reserved.
11267 //
11268 // Redistribution and use in source and binary forms, with or without
11269 // modification, are permitted provided that the following conditions are
11270 // met:
11271 //
11272 // * Redistributions of source code must retain the above copyright
11273 // notice, this list of conditions and the following disclaimer.
11274 // * Redistributions in binary form must reproduce the above
11275 // copyright notice, this list of conditions and the following disclaimer
11276 // in the documentation and/or other materials provided with the
11277 // distribution.
11278 // * Neither the name of Google Inc. nor the names of its
11279 // contributors may be used to endorse or promote products derived from
11280 // this software without specific prior written permission.
11281 //
11282 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11283 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11284 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11285 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11286 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11287 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11288 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11289 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11290 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11291 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11292 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11293 
11294 
11295 // Google Mock - a framework for writing C++ mock classes.
11296 //
11297 // This file implements some matchers that depend on gmock-matchers.h.
11298 //
11299 // Note that tests are implemented in gmock-matchers_test.cc rather than
11300 // gmock-more-matchers-test.cc.
11301 
11302 // GOOGLETEST_CM0002 DO NOT DELETE
11303 
11304 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11305 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11306 
11307 
11308 namespace testing {
11309 
11310 // Silence C4100 (unreferenced formal
11311 // parameter) for MSVC
11312 #ifdef _MSC_VER
11313 # pragma warning(push)
11314 # pragma warning(disable:4100)
11315 #if (_MSC_VER == 1900)
11316 // and silence C4800 (C4800: 'int *const ': forcing value
11317 // to bool 'true' or 'false') for MSVC 14
11318 # pragma warning(disable:4800)
11319  #endif
11320 #endif
11321 
11322 // Defines a matcher that matches an empty container. The container must
11323 // support both size() and empty(), which all STL-like containers provide.
11324 MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
11325  if (arg.empty()) {
11326  return true;
11327  }
11328  *result_listener << "whose size is " << arg.size();
11329  return false;
11330 }
11331 
11332 // Define a matcher that matches a value that evaluates in boolean
11333 // context to true. Useful for types that define "explicit operator
11334 // bool" operators and so can't be compared for equality with true
11335 // and false.
11336 MATCHER(IsTrue, negation ? "is false" : "is true") {
11337  return static_cast<bool>(arg);
11338 }
11339 
11340 // Define a matcher that matches a value that evaluates in boolean
11341 // context to false. Useful for types that define "explicit operator
11342 // bool" operators and so can't be compared for equality with true
11343 // and false.
11344 MATCHER(IsFalse, negation ? "is true" : "is false") {
11345  return !static_cast<bool>(arg);
11346 }
11347 
11348 #ifdef _MSC_VER
11349 # pragma warning(pop)
11350 #endif
11351 
11352 
11353 } // namespace testing
11354 
11355 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11356 // Copyright 2008, Google Inc.
11357 // All rights reserved.
11358 //
11359 // Redistribution and use in source and binary forms, with or without
11360 // modification, are permitted provided that the following conditions are
11361 // met:
11362 //
11363 // * Redistributions of source code must retain the above copyright
11364 // notice, this list of conditions and the following disclaimer.
11365 // * Redistributions in binary form must reproduce the above
11366 // copyright notice, this list of conditions and the following disclaimer
11367 // in the documentation and/or other materials provided with the
11368 // distribution.
11369 // * Neither the name of Google Inc. nor the names of its
11370 // contributors may be used to endorse or promote products derived from
11371 // this software without specific prior written permission.
11372 //
11373 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11374 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11375 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11376 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11377 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11378 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11379 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11380 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11381 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11382 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11383 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11384 
11385 
11386 // Implements class templates NiceMock, NaggyMock, and StrictMock.
11387 //
11388 // Given a mock class MockFoo that is created using Google Mock,
11389 // NiceMock<MockFoo> is a subclass of MockFoo that allows
11390 // uninteresting calls (i.e. calls to mock methods that have no
11391 // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
11392 // that prints a warning when an uninteresting call occurs, and
11393 // StrictMock<MockFoo> is a subclass of MockFoo that treats all
11394 // uninteresting calls as errors.
11395 //
11396 // Currently a mock is naggy by default, so MockFoo and
11397 // NaggyMock<MockFoo> behave like the same. However, we will soon
11398 // switch the default behavior of mocks to be nice, as that in general
11399 // leads to more maintainable tests. When that happens, MockFoo will
11400 // stop behaving like NaggyMock<MockFoo> and start behaving like
11401 // NiceMock<MockFoo>.
11402 //
11403 // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
11404 // their respective base class. Therefore you can write
11405 // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
11406 // has a constructor that accepts (int, const char*), for example.
11407 //
11408 // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
11409 // and StrictMock<MockFoo> only works for mock methods defined using
11410 // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
11411 // If a mock method is defined in a base class of MockFoo, the "nice"
11412 // or "strict" modifier may not affect it, depending on the compiler.
11413 // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
11414 // supported.
11415 
11416 // GOOGLETEST_CM0002 DO NOT DELETE
11417 
11418 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11419 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11420 
11421 #include <cstdint>
11422 #include <type_traits>
11423 
11424 
11425 namespace testing {
11426 template <class MockClass>
11427 class NiceMock;
11428 template <class MockClass>
11429 class NaggyMock;
11430 template <class MockClass>
11431 class StrictMock;
11432 
11433 namespace internal {
11434 template <typename T>
11435 std::true_type StrictnessModifierProbe(const NiceMock<T>&);
11436 template <typename T>
11437 std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
11438 template <typename T>
11439 std::true_type StrictnessModifierProbe(const StrictMock<T>&);
11440 std::false_type StrictnessModifierProbe(...);
11441 
11442 template <typename T>
11443 constexpr bool HasStrictnessModifier() {
11444  return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
11445 }
11446 
11447 // Base classes that register and deregister with testing::Mock to alter the
11448 // default behavior around uninteresting calls. Inheriting from one of these
11449 // classes first and then MockClass ensures the MockClass constructor is run
11450 // after registration, and that the MockClass destructor runs before
11451 // deregistration. This guarantees that MockClass's constructor and destructor
11452 // run with the same level of strictness as its instance methods.
11453 
11454 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
11455  (defined(_MSC_VER) || defined(__clang__))
11456 // We need to mark these classes with this declspec to ensure that
11457 // the empty base class optimization is performed.
11458 #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
11459 #else
11460 #define GTEST_INTERNAL_EMPTY_BASE_CLASS
11461 #endif
11462 
11463 template <typename Base>
11464 class NiceMockImpl {
11465  public:
11466  NiceMockImpl() {
11467  ::testing::Mock::AllowUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11468  }
11469 
11470  ~NiceMockImpl() {
11471  ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11472  }
11473 };
11474 
11475 template <typename Base>
11476 class NaggyMockImpl {
11477  public:
11478  NaggyMockImpl() {
11479  ::testing::Mock::WarnUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11480  }
11481 
11482  ~NaggyMockImpl() {
11483  ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11484  }
11485 };
11486 
11487 template <typename Base>
11488 class StrictMockImpl {
11489  public:
11490  StrictMockImpl() {
11491  ::testing::Mock::FailUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11492  }
11493 
11494  ~StrictMockImpl() {
11495  ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11496  }
11497 };
11498 
11499 } // namespace internal
11500 
11501 template <class MockClass>
11502 class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
11503  : private internal::NiceMockImpl<MockClass>,
11504  public MockClass {
11505  public:
11506  static_assert(!internal::HasStrictnessModifier<MockClass>(),
11507  "Can't apply NiceMock to a class hierarchy that already has a "
11508  "strictness modifier. See "
11509  "https://google.github.io/googletest/"
11510  "gmock_cook_book.html#NiceStrictNaggy");
11511  NiceMock() : MockClass() {
11512  static_assert(sizeof(*this) == sizeof(MockClass),
11513  "The impl subclass shouldn't introduce any padding");
11514  }
11515 
11516  // Ideally, we would inherit base class's constructors through a using
11517  // declaration, which would preserve their visibility. However, many existing
11518  // tests rely on the fact that current implementation reexports protected
11519  // constructors as public. These tests would need to be cleaned up first.
11520 
11521  // Single argument constructor is special-cased so that it can be
11522  // made explicit.
11523  template <typename A>
11524  explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11525  static_assert(sizeof(*this) == sizeof(MockClass),
11526  "The impl subclass shouldn't introduce any padding");
11527  }
11528 
11529  template <typename TArg1, typename TArg2, typename... An>
11530  NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11531  : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11532  std::forward<An>(args)...) {
11533  static_assert(sizeof(*this) == sizeof(MockClass),
11534  "The impl subclass shouldn't introduce any padding");
11535  }
11536 
11537  private:
11538  GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
11539 };
11540 
11541 template <class MockClass>
11542 class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
11543  : private internal::NaggyMockImpl<MockClass>,
11544  public MockClass {
11545  static_assert(!internal::HasStrictnessModifier<MockClass>(),
11546  "Can't apply NaggyMock to a class hierarchy that already has a "
11547  "strictness modifier. See "
11548  "https://google.github.io/googletest/"
11549  "gmock_cook_book.html#NiceStrictNaggy");
11550 
11551  public:
11552  NaggyMock() : MockClass() {
11553  static_assert(sizeof(*this) == sizeof(MockClass),
11554  "The impl subclass shouldn't introduce any padding");
11555  }
11556 
11557  // Ideally, we would inherit base class's constructors through a using
11558  // declaration, which would preserve their visibility. However, many existing
11559  // tests rely on the fact that current implementation reexports protected
11560  // constructors as public. These tests would need to be cleaned up first.
11561 
11562  // Single argument constructor is special-cased so that it can be
11563  // made explicit.
11564  template <typename A>
11565  explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11566  static_assert(sizeof(*this) == sizeof(MockClass),
11567  "The impl subclass shouldn't introduce any padding");
11568  }
11569 
11570  template <typename TArg1, typename TArg2, typename... An>
11571  NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11572  : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11573  std::forward<An>(args)...) {
11574  static_assert(sizeof(*this) == sizeof(MockClass),
11575  "The impl subclass shouldn't introduce any padding");
11576  }
11577 
11578  private:
11579  GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
11580 };
11581 
11582 template <class MockClass>
11583 class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
11584  : private internal::StrictMockImpl<MockClass>,
11585  public MockClass {
11586  public:
11587  static_assert(
11588  !internal::HasStrictnessModifier<MockClass>(),
11589  "Can't apply StrictMock to a class hierarchy that already has a "
11590  "strictness modifier. See "
11591  "https://google.github.io/googletest/"
11592  "gmock_cook_book.html#NiceStrictNaggy");
11593  StrictMock() : MockClass() {
11594  static_assert(sizeof(*this) == sizeof(MockClass),
11595  "The impl subclass shouldn't introduce any padding");
11596  }
11597 
11598  // Ideally, we would inherit base class's constructors through a using
11599  // declaration, which would preserve their visibility. However, many existing
11600  // tests rely on the fact that current implementation reexports protected
11601  // constructors as public. These tests would need to be cleaned up first.
11602 
11603  // Single argument constructor is special-cased so that it can be
11604  // made explicit.
11605  template <typename A>
11606  explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11607  static_assert(sizeof(*this) == sizeof(MockClass),
11608  "The impl subclass shouldn't introduce any padding");
11609  }
11610 
11611  template <typename TArg1, typename TArg2, typename... An>
11612  StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11613  : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11614  std::forward<An>(args)...) {
11615  static_assert(sizeof(*this) == sizeof(MockClass),
11616  "The impl subclass shouldn't introduce any padding");
11617  }
11618 
11619  private:
11620  GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
11621 };
11622 
11623 #undef GTEST_INTERNAL_EMPTY_BASE_CLASS
11624 
11625 } // namespace testing
11626 
11627 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11628 
11629 namespace testing {
11630 
11631 // Declares Google Mock flags that we want a user to use programmatically.
11632 GMOCK_DECLARE_bool_(catch_leaked_mocks);
11633 GMOCK_DECLARE_string_(verbose);
11634 GMOCK_DECLARE_int32_(default_mock_behavior);
11635 
11636 // Initializes Google Mock. This must be called before running the
11637 // tests. In particular, it parses the command line for the flags
11638 // that Google Mock recognizes. Whenever a Google Mock flag is seen,
11639 // it is removed from argv, and *argc is decremented.
11640 //
11641 // No value is returned. Instead, the Google Mock flag variables are
11642 // updated.
11643 //
11644 // Since Google Test is needed for Google Mock to work, this function
11645 // also initializes Google Test and parses its flags, if that hasn't
11646 // been done.
11647 GTEST_API_ void InitGoogleMock(int* argc, char** argv);
11648 
11649 // This overloaded version can be used in Windows programs compiled in
11650 // UNICODE mode.
11651 GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
11652 
11653 // This overloaded version can be used on Arduino/embedded platforms where
11654 // there is no argc/argv.
11655 GTEST_API_ void InitGoogleMock();
11656 
11657 } // namespace testing
11658 
11659 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
Definition: gmock.h:374
STL namespace.
iterator begin()
use to initialise an iterator to the first element of the vector
Definition: VectorWithOffset.inl:190
const Array< num_dimensions - num_dimensions2, elemT > & get(const Array< num_dimensions, elemT > &a, const BasicCoordinate< num_dimensions2, int > &c)
an alternative for array indexing using BasicCoordinate objects
Definition: array_index_functions.inl:114