STIR  6.3.0
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members

A base class for Gibbs type penalties in the GeneralisedPrior hierarchy. More...

#include "stir/recon_buildblock/GibbsPenalty.h"

Inheritance diagram for stir::GibbsPenalty< elemT, potentialT >:
Inheritance graph
[legend]

Public Member Functions

 GibbsPenalty ()
 Default constructor.
 
 GibbsPenalty (const bool only_2D, float penalization_factor)
 Explicit Constructor with 2D/3D option and penalization factor.
 
double compute_value (const DiscretisedDensity< 3, elemT > &current_image_estimate) override
 Compute the value of the prior for the current image estimate.
 
void compute_gradient (DiscretisedDensity< 3, elemT > &prior_gradient, const DiscretisedDensity< 3, elemT > &current_image_estimate) override
 Compute the gradient of the prior for the current image estimate.
 
double compute_gradient_times_input (const DiscretisedDensity< 3, elemT > &input, const DiscretisedDensity< 3, elemT > &current_image_estimate) override
 Compute the dot product of the prior gradient and an input image.
 
void compute_Hessian (DiscretisedDensity< 3, elemT > &prior_Hessian_for_single_densel, const BasicCoordinate< 3, int > &coords, const DiscretisedDensity< 3, elemT > &current_image_estimate) const override
 Compute the Hessian row of the prior at (coords).
 
void compute_Hessian_diagonal (DiscretisedDensity< 3, elemT > &Hessian_diagonal, const DiscretisedDensity< 3, elemT > &current_estimate) const override
 Compute the diagonal of the Hessian matrix.
 
void accumulate_Hessian_times_input (DiscretisedDensity< 3, elemT > &output, const DiscretisedDensity< 3, elemT > &current_estimate, const DiscretisedDensity< 3, elemT > &input) const override
 Accumulate Hessian times input image into output.
 
const Array< 3, float > & get_weights () const
 Get the current weights array. More...
 
virtual void set_weights (const Array< 3, float > &)
 Set the weights array for the prior. More...
 
shared_ptr< const DiscretisedDensity< 3, elemT > > get_kappa_sptr () const
 get current kappa image More...
 
virtual void set_kappa_sptr (const shared_ptr< const DiscretisedDensity< 3, elemT >> &)
 Set the kappa image (spatially-varying penalty factors). More...
 
Succeeded set_up (shared_ptr< const DiscretisedDensity< 3, elemT >> const &target_sptr) override
 Set up the prior for a target image. Must be called before use.
 
virtual std::string get_parsing_name () const
 Getter method to retrieve the parsing name. More...
 
bool is_convex () const override
 Return whether the prior is convex or not.
 
- Public Member Functions inherited from stir::GeneralisedPrior< DiscretisedDensity< 3, elemT > >
virtual double compute_gradient_times_input (const DiscretisedDensity< 3, elemT > &input, const DiscretisedDensity< 3, elemT > &current_estimate)
 compute the dot product of the gradient of the log of the prior function at the current_estimate with input More...
 
virtual void compute_Hessian (DiscretisedDensity< 3, elemT > &prior_Hessian_for_single_densel, const BasicCoordinate< 3, int > &coords, const DiscretisedDensity< 3, elemT > &current_image_estimate) const
 This computes a single row of the Hessian. More...
 
virtual void compute_Hessian_diagonal (DiscretisedDensity< 3, elemT > &Hessian_diagonal, const DiscretisedDensity< 3, elemT > &current_estimate) const
 This computes the diagonal of the Hessian of the log of the prior function at the current_estimate and stores it in Hessian_diagonal. More...
 
virtual void add_multiplication_with_approximate_Hessian (DiscretisedDensity< 3, elemT > &output, const DiscretisedDensity< 3, elemT > &input) const
 This should compute the multiplication of the Hessian with a vector and add it to output. More...
 
virtual void accumulate_Hessian_times_input (DiscretisedDensity< 3, elemT > &output, const DiscretisedDensity< 3, elemT > &current_estimate, const DiscretisedDensity< 3, elemT > &input) const
 This should compute the multiplication of the Hessian with a vector and add it to output. More...
 
float get_penalisation_factor () const
 
void set_penalisation_factor (float new_penalisation_factor)
 
virtual Succeeded set_up (shared_ptr< const DiscretisedDensity< 3, elemT > > const &target_sptr)
 Has to be called before using this object.
 
- Public Member Functions inherited from stir::RegisteredObjectBase
virtual std::string get_registered_name () const =0
 Returns the name of the type of the object. More...
 
- Public Member Functions inherited from stir::ParsingObject
 ParsingObject (const ParsingObject &)
 
ParsingObjectoperator= (const ParsingObject &)
 
void ask_parameters ()
 
virtual std::string parameter_info ()
 
bool parse (std::istream &f)
 
bool parse (const char *const filename)
 

Protected Member Functions

void compute_default_weights (const CartesianCoordinate3D< float > &grid_spacing, bool only_2D)
 Compute default weights for the prior.
 
void check (DiscretisedDensity< 3, elemT > const &current_image_estimate) const override
 Check that the prior is ready to be used.
 
void set_defaults () override
 Set defaults before parsing.
 
void initialise_keymap () override
 Initialise all keywords.
 
bool post_processing () override
 This will be called at the end of the parsing. More...
 
- Protected Member Functions inherited from stir::GeneralisedPrior< DiscretisedDensity< 3, elemT > >
void set_defaults () override
 sets value for penalisation factor More...
 
void initialise_keymap () override
 sets key for penalisation factor More...
 
virtual void check (DiscretisedDensity< 3, elemT > const &current_estimate) const
 Check that the prior is ready to be used.
 
- Protected Member Functions inherited from stir::ParsingObject
virtual void set_key_values ()
 This will be called before parsing or parameter_info is called. More...
 

Protected Attributes

Array< 3, float > weights
 The weights for the neighbourhood.
 
bool only_2D
 can be set during parsing to restrict the weights to the 2D case
 
std::string gradient_filename_prefix
 filename prefix for outputing the gradient whenever compute_gradient() is called. More...
 
std::string kappa_filename
 Filename for the $\kappa$ image that will be read by post_processing()
 
potentialT potential
 Gibbs Potential Function.
 
shared_ptr< const DiscretisedDensity< 3, elemT > > kappa_ptr
 The kappa image (spatially-varying penalty factors).
 
Image and weight boundary indices
CartesianCoordinate3D< int > image_dim
 Image dimensions.
 
CartesianCoordinate3D< int > image_max_indices
 Maximum image indices.
 
CartesianCoordinate3D< int > image_min_indices
 Minimum image indices.
 
- Protected Attributes inherited from stir::GeneralisedPrior< DiscretisedDensity< 3, elemT > >
float penalisation_factor
 
bool _already_set_up
 
- Protected Attributes inherited from stir::ParsingObject
KeyParser parser
 

Additional Inherited Members

- Static Public Member Functions inherited from stir::RegisteredObject< GeneralisedPrior< DiscretisedDensity< 3, elemT > > >
static GeneralisedPrior< DiscretisedDensity< 3, elemT > > * read_registered_object (std::istream *in, const std::string &registered_name)
 Construct a new object (of a type derived from Root, its actual type determined by the registered_name parameter) by parsing the istream. More...
 
static GeneralisedPrior< DiscretisedDensity< 3, elemT > > * ask_type_and_parameters ()
 ask the user for the type, and then calls read_registered_object(0, type) More...
 
static void list_registered_names (std::ostream &stream)
 List all possible registered names to the stream. More...
 
- Protected Types inherited from stir::RegisteredObject< GeneralisedPrior< DiscretisedDensity< 3, elemT > > >
typedef GeneralisedPrior< DiscretisedDensity< 3, elemT > > *(* RootFactory) (std::istream *)
 The type of a root factory is a function, taking an istream* as argument, and returning a Root*.
 
typedef FactoryRegistry< std::string, RootFactory, interfile_lessRegistryType
 The type of the registry.
 
- Static Protected Member Functions inherited from stir::RegisteredObject< GeneralisedPrior< DiscretisedDensity< 3, elemT > > >
static RegistryTyperegistry ()
 Static function returning the registry. More...
 

Detailed Description

template<typename elemT, typename potentialT>
class stir::GibbsPenalty< elemT, potentialT >

A base class for Gibbs type penalties in the GeneralisedPrior hierarchy.

The prior is computed as follows:

\[ f = \sum_{r,dr} w_{r,dr} \phi(\lambda_r , \lambda_{r+dr}) * \kappa_r * \kappa_{r+dr} \]

with gradient given by:

\[ g_r = 2 * \sum_{dr} w_{r,dr} \phi'(\lambda_r , \lambda_{r+dr}) * \kappa_r * \kappa_{r+dr} \]

where $\lambda$ is the image and $r$ and $dr$ are indices and the sum is over the neighbourhood where the weights $w_{dr}$ are non-zero.

The $\phi$ function is the potential function, which is provided via the template parameter PotentialFun. The potential function needs to be symmetric ((x,y) = (y,x)). Currently the potential function is implemented in the header of the derived classes (check GibbsQuadraticPrior.h or GibbsRelativeDifferencePrior.h to see examples).

Potential Function Requirements
The potential function class (PotentialT) must implement the following methods:

These methods should be declared with host device qualifiers, except for is_convex() and initialise_keymap() which are only used on the host. The coordinate parameters (z, y, x) may be used by the potential function for position-dependent behavior. Even if the potential has no parameters to parse, the initialise_keymap method must be implemented (possibly with an empty body).

The $\kappa$ image can be used to have spatially-varying penalties such as in Jeff Fessler's papers. It should have identical dimensions to the image for which the penalty is computed. If $\kappa$ is not set, this class will effectively use 1 for all $\kappa$'s.

By default, a 3x3 or 3x3x3 neigbourhood is used where the weights are set to x-voxel_size divided by the Euclidean distance between the points. Custom weights can be set using the method set_weights, the general form of the weights is NxNxN with N odd.

Warning
Currently only symmetric weights are supported (w_{i,j} = w_{j,i}).
Parsing
These are the keywords that can be used in all priors derived from GibbsPrior:
; next defaults to 0, set to 1 for 2D inverse Euclidean weights, 0 for 3D
only 2D:= 0
; next can be used to set weights explicitly. Needs to be a 3D array (of floats).
; weights:={{{0,1,0},{1,0,1},{0,1,0}}}
; use next parameter to specify an image with penalisation factors (a la Fessler)
; kappa filename:=
; use next parameter to get gradient images at every subiteration
gradient filename prefix:=

Member Function Documentation

◆ get_weights()

template<typename elemT , typename PotentialT >
const Array< 3, float > & stir::GibbsPenalty< elemT, PotentialT >::get_weights ( ) const

Get the current weights array.

get penalty weights for the neigbourhood

◆ set_weights()

template<typename elemT , typename PotentialT >
void stir::GibbsPenalty< elemT, PotentialT >::set_weights ( const Array< 3, float > &  w)
virtual

Set the weights array for the prior.

set penalty weights for the neigbourhood

Reimplemented in stir::CudaGibbsPenalty< elemT, PotentialT >.

◆ get_kappa_sptr()

template<typename elemT , typename PotentialT >
shared_ptr< const DiscretisedDensity< 3, elemT > > stir::GibbsPenalty< elemT, PotentialT >::get_kappa_sptr ( ) const

get current kappa image

Warning
As this function returns a shared_ptr, this is dangerous. You should not modify the image by manipulating the image refered to by this pointer. Unpredictable results will occur.

◆ set_kappa_sptr()

template<typename elemT, typename PotentialT >
void stir::GibbsPenalty< elemT, PotentialT >::set_kappa_sptr ( const shared_ptr< const DiscretisedDensity< 3, elemT >> &  k)
virtual

Set the kappa image (spatially-varying penalty factors).

set kappa image

Reimplemented in stir::CudaGibbsPenalty< elemT, PotentialT >.

◆ get_parsing_name()

template<typename elemT , typename potentialT >
std::string stir::GibbsPenalty< elemT, potentialT >::get_parsing_name ( ) const
virtual

Getter method to retrieve the parsing name.

Default implementation just uses get_registered_name(), and appends " Parameters".

◆ post_processing()

template<typename elemT , typename potentialT >
bool stir::GibbsPenalty< elemT, potentialT >::post_processing ( )
overrideprotectedvirtual

This will be called at the end of the parsing.

Returns
false if everything OK, true if not

Reimplemented from stir::ParsingObject.

Member Data Documentation

◆ gradient_filename_prefix

template<typename elemT, typename potentialT>
std::string stir::GibbsPenalty< elemT, potentialT >::gradient_filename_prefix
protected

filename prefix for outputing the gradient whenever compute_gradient() is called.

An internal counter is used to keep track of the number of times the gradient is computed. The filename will be constructed by concatenating gradient_filename_prefix and the counter.


The documentation for this class was generated from the following files: