STIR
6.2.0
|
Test class for PoissonLogLikelihoodWithLinearModelForMeanAndProjData. More...
Public Member Functions | |
PoissonLogLikelihoodWithLinearModelForMeanAndProjDataTests (char const *const proj_data_filename=0, char const *const density_filename=0) | |
Constructor that can take some input data to run the test with. More... | |
void | construct_input_data (shared_ptr< target_type > &density_sptr, const bool TOF_or_not) |
void | run_tests () override |
Function (to be overloaded) which does the actual tests. More... | |
Public Member Functions inherited from stir::ObjectiveFunctionTests< PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > >, DiscretisedDensity< 3, float > > | |
virtual Succeeded | test_gradient (const std::string &test_name, PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > > &objective_function, DiscretisedDensity< 3, float > &target, const float eps, const bool full_gradient=true) |
Test the gradient of the objective function by comparing to the numerical gradient via perturbation. More... | |
virtual Succeeded | test_Hessian (const std::string &test_name, PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > > &objective_function, const DiscretisedDensity< 3, float > &target, const float eps) |
Test the accumulate_Hessian_times_input of the objective function by comparing to the numerical result via perturbation. More... | |
virtual Succeeded | test_Hessian_concavity (const std::string &test_name, PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > > &objective_function, const DiscretisedDensity< 3, float > &target, const float mult_factor=1.F) |
Test the Hessian of the objective function by testing the (mult_factor * x^T Hx > 0) condition. More... | |
Public Member Functions inherited from stir::RunTests | |
RunTests (const double tolerance=1E-4) | |
Default constructor. | |
virtual | ~RunTests () |
Destructor, outputs a diagnostic message. | |
bool | is_everything_ok () const |
Returns if all checks were fine upto now. | |
int | main_return_value () const |
Handy return value for a main() function. More... | |
void | set_tolerance (const double tolerance) |
Set value used in floating point comparisons (see check_* functions) | |
double | get_tolerance () const |
Get value used in floating point comparisons (see check_* functions) | |
bool | check (const bool, const std::string &str="") |
Tests if true, str can be used to tell what you are testing. More... | |
template<class T1 , class T2 > | |
bool | check_if_less (T1 a, T2 b, const std::string &str="") |
check if a<b | |
bool | check_if_equal (const std::string &a, const std::string &b, const std::string &str="") |
bool | check_if_equal (const double a, const double b, const std::string &str="") |
bool | check_if_equal (const short a, const short b, const std::string &str="") |
bool | check_if_equal (const unsigned short a, const unsigned short b, const std::string &str="") |
bool | check_if_equal (const int a, const int b, const std::string &str="") |
bool | check_if_equal (const unsigned int a, const unsigned int b, const std::string &str="") |
bool | check_if_equal (const long a, const long b, const std::string &str="") |
bool | check_if_equal (const unsigned long a, const unsigned long b, const std::string &str="") |
bool | check_if_equal (const Bin &a, const Bin &b, const std::string &str="") |
template<class T > | |
bool | check_if_equal (const DetectionPosition< T > &a, const DetectionPosition< T > &b, const std::string &str="") |
template<class T > | |
bool | check_if_equal (const std::complex< T > a, const std::complex< T > b, const std::string &str="") |
check equality by calling check_if_equal on real and imaginary parts | |
template<class T > | |
bool | check_if_equal (const VectorWithOffset< T > &t1, const VectorWithOffset< T > &t2, const std::string &str="") |
check equality by comparing ranges and calling check_if_equal on all elements | |
template<class T > | |
bool | check_if_equal (const std::vector< T > &t1, const std::vector< T > &t2, const std::string &str="") |
check equality by comparing size and calling check_if_equal on all elements | |
bool | check_if_equal (const ProjDataInMemory &t1, const ProjDataInMemory &t2, const std::string &str="") |
template<int n> | |
bool | check_if_equal (const IndexRange< n > &t1, const IndexRange< n > &t2, const std::string &str="") |
template<int num_dimensions, class coordT > | |
bool | check_if_equal (const BasicCoordinate< num_dimensions, coordT > &a, const BasicCoordinate< num_dimensions, coordT > &b, const std::string &str="") |
check equality by comparing norm(a-b) with tolerance | |
bool | check_if_zero (const double a, const std::string &str="") |
bool | check_if_zero (const short a, const std::string &str="") |
bool | check_if_zero (const unsigned short a, const std::string &str="") |
bool | check_if_zero (const int a, const std::string &str="") |
bool | check_if_zero (const unsigned int a, const std::string &str="") |
bool | check_if_zero (const long a, const std::string &str="") |
bool | check_if_zero (const unsigned long a, const std::string &str="") |
template<class T > | |
bool | check_if_zero (const VectorWithOffset< T > &t, const std::string &str="") |
use check_if_zero on all elements | |
template<int num_dimensions, class coordT > | |
bool | check_if_zero (const BasicCoordinate< num_dimensions, coordT > &a, const std::string &str="") |
compare norm with tolerance | |
Protected Member Functions | |
void | run_tests_for_objective_function (objective_function_type &objective_function, target_type &target) |
run the test | |
void | test_approximate_Hessian_concavity (objective_function_type &objective_function, target_type &target) |
Test the approximate Hessian of the objective function by testing the (x^T Hx > 0) condition. More... | |
Protected Member Functions inherited from stir::ObjectiveFunctionTests< PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > >, DiscretisedDensity< 3, float > > | |
virtual shared_ptr< const DiscretisedDensity< 3, float > > | construct_increment (const DiscretisedDensity< 3, float > &target, const float eps) const |
Construct small increment for target. More... | |
Protected Member Functions inherited from stir::RunTests | |
template<class T > | |
bool | check_if_equal_generic (const T &a, const T &b, const std::string &str) |
function that is called by some check_if_equal implementations. It just uses operator!= | |
template<class T > | |
bool | check_if_zero_generic (T a, const std::string &str) |
function that is called by some check_if_zero implementations. It just uses operator!= | |
Protected Attributes | |
char const * | proj_data_filename |
char const * | density_filename |
shared_ptr< ProjData > | proj_data_sptr |
shared_ptr< ProjData > | mult_proj_data_sptr |
shared_ptr< ProjData > | add_proj_data_sptr |
shared_ptr< PoissonLogLikelihoodWithLinearModelForMeanAndProjData< target_type > > | objective_function_sptr |
Protected Attributes inherited from stir::RunTests | |
double | tolerance |
tolerance for comparisons with real values | |
bool | everything_ok |
variable storing current status | |
Additional Inherited Members | |
Public Types inherited from stir::ObjectiveFunctionTests< PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > >, DiscretisedDensity< 3, float > > | |
typedef PoissonLogLikelihoodWithLinearModelForMeanAndProjData< DiscretisedDensity< 3, float > > | objective_function_type |
typedef DiscretisedDensity< 3, float > | target_type |
Test class for PoissonLogLikelihoodWithLinearModelForMeanAndProjData.
This is a somewhat preliminary implementation of a test that compares the result of GeneralisedObjectiveFunction::compute_gradient with a numerical gradient computed by using the GeneralisedObjectiveFunction::compute_objective_function() function.
The trouble with this is that compute the gradient voxel by voxel is obviously terribly slow. A solution (for the test) would be to compute it only in a subset of voxels or so. We'll leave this for later.
Note that the test only works if the objective function is well-defined. For example, if certain projections are non-zero, while the model estimates them to be zero, the Poisson objective function is in theory infinite. PoissonLogLikelihoodWithLinearModelForMeanAndProjData uses some thresholds to try to avoid overflow, but if there are too many of these bins, the total objective function will become infinite. The numerical gradient then becomes ill-defined (even in voxels that do not contribute to these bins).
stir::PoissonLogLikelihoodWithLinearModelForMeanAndProjDataTests::PoissonLogLikelihoodWithLinearModelForMeanAndProjDataTests | ( | char const *const | proj_data_filename = 0 , |
char const *const | density_filename = 0 |
||
) |
Constructor that can take some input data to run the test with.
This makes it possible to run the test with your own data. However, beware that it is very easy to set up a very long computation. See also the note about non-zero measured bins.
|
overridevirtual |
Function (to be overloaded) which does the actual tests.
This function is expected to do a series of calls to check(), check_if_equal() etc.
Implements stir::RunTests.
References stir::RunTests::check(), stir::IterativeReconstruction< TargetT >::get_initial_data_ptr(), and run_tests_for_objective_function().
|
protected |
Test the approximate Hessian of the objective function by testing the (x^T Hx > 0) condition.
setup images
Compute H x
Compute dot(x,(H x))
References stir::Array< num_dimensions, elemT >::begin_all(), stir::Array< 3, elemT >::begin_all(), stir::RunTests::check(), stir::RunTests::check_if_less(), stir::ProjDataInfo::construct_proj_data_info(), stir::Array< num_dimensions, elemT >::end_all(), stir::Array< 3, elemT >::end_all(), stir::Array< num_dimensions, elemT >::find_max(), stir::Array< 3, elemT >::find_max(), stir::Array< num_dimensions, elemT >::find_min(), stir::DiscretisedDensity< num_dimensions, elemT >::get_empty_copy(), stir::info(), stir::inner_product(), stir::ProjDataInfo::ProjDataInfoCTI(), stir::ProjData::read_from_file(), stir::PoissonLogLikelihoodWithLinearModelForMeanAndProjData< TargetT >::set_additive_proj_data_sptr(), stir::PoissonLogLikelihoodWithLinearModelForMeanAndProjData< TargetT >::set_normalisation_sptr(), stir::PoissonLogLikelihoodWithLinearModelForMeanAndProjData< TargetT >::set_num_subsets(), stir::PoissonLogLikelihoodWithLinearModelForMean< TargetT >::set_up(), and stir::PoissonLogLikelihoodWithLinearModelForMean< TargetT >::set_use_subset_sensitivities().
Referenced by run_tests_for_objective_function().